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Journal club assignments for L9



• Electrical double layer

• Poisson-Boltzmann equation
• Poisson equation, relate potential change to charge density
• Boltzmann equation, relate ion distribution to potential energy
• Poisson-Boltzmann: self-consistent description of electrostatic potential inside EDL, given bulk ion concentration (C∞), introduce Debye length (𝛋)

• Debye-Huckel
• For small surface potential and binary electrolyte, PB simplifies to Debye-Huckel, which give exponential decay of electrostatic potential (Ψ(x)) 

from surface potential (Ψ0) inside EDL with characteristic length (𝛋-1)
• Debye-Huckel (Ψ(x)) solutions for 1 plate, 1 sphere, between 2 plates

• Surface charge density (ρs) for 1 plate
• Electroneutrality gives relation between (ρs) and (Ψ0)
• Differentiate Boltzmann and use PB equation to relate total ion concentration at surface of 1 pate (C0) to (C∞) and (ρs)
• Grahame equation, relate (ρs) to (Ψ0) and (C∞) 

• In binary electrolyte, example of Grahame used to calculate (C0) from (Ψ0) and (C∞) with fixed (ρs)
• For low (Ψ0) and binary electrolyte, Grahame simplifies to (ρs) = ε𝛋(Ψ0) 

• Differentiate Boltzmann and use PB equation also relates individual ion concentration (Ci(x)) to electrostatic potential (Ψ(x))
• For binary electrolyte, this simplifies to Gouy-Chapman’s solution to (Ψ(x)), allow us to plot EDL: (Ci(x)), (Ci0(x)), (Ψ(x)), (Ψ0), given (ρs) and (C∞)
• For low (Ψ0) and binary electrolyte, Gouy-Chapman simplifies to Debye-Huckel, completing the full circle

• Surface charge density (ρs) using Debye-Huckel (low (Ψ0) and binary electrolyte assumed) 
• Direct plugging Debye-Huckel into electroneutrality for 1 plate will also give simplified Grahame: (ρs) = ε𝛋(Ψ0)
• Surface charge density (ρs) using Debye-Huckel for 1 sphere, for 2 plates: for finite (ρs), (Ψ0) → ∞ as gap → 0

• Electrostatic force per area (fes) between 2 plates
• Origin (contact value theorem): increased ionic concentration in gap → increased osmotic pressure (𝜋) exerted on plates
• Navier-Stokes equation for static fluid reduces to balance of pressure and electrical forces on the fluid
• Navier-Stokes + Poisson equations relates (𝜋) to electric field (dΨ(x)/dx)
• Navier-Stokes + Poisson + Boltzmann equations solve (𝜋) as a function of (Ψ(x)) and (C∞)
• For low (Ψ0) and binary electrolyte, solution simplifies to (𝜋) ∼ ε𝛋(Ψ(x))2
• Plug in Debye-Huckel for 2 plates for (Ψ(x)) to obtain exponential decay of electrostatic force per area (fes) with characteristic length (𝛋-1)
• Integrate (fes) for electrostatic energy per unit area (Ves) between 2 plates 

• Electrostatic energy (Φes) between 2 spheres and the Derjaguin approximation
• Apply the Derjaguin approximation to obtain the electrostatic energy (Φes) between 2 spheres
• Differentiate to calculate the electrostatic force (Fes) between 2 spheres
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• evaluate the electrostatic force per area (fes). For plates with an area 
(A), we have 

• The Navier-Stokes equation is 

• the x-direction Navier-Stokes equation with v = 0 is 

• This gives the balance of pressure and electrical forces on the fluid. 
Where the fluid is static, these two forces balance at every position. 

• re-arranged version of the Poisson equation

• make a substitution for the volumetric charge density to give 

Electrostatic force between plates 



Electrostatic force between plates 

• re-arranged version of the Poisson equation

• make a substitution for the volumetric charge density to give 

• Recall from the chain rule

integrate



Electrostatic force between plates 

• The easiest place to evaluate B is at the midplane, where by 
symmetry we know that dΨ / dx = 0. Therefore B is the pressure at x 
= 0. 

• What contributes to this pressure? If the plates were uncharged, the 
pressure at the midplane would be simply the ambient pressure (p∞).

• As charges are added to the plate, bringing additional ions into the 
electrical double layer region between the plates, there is also an 
osmotic pressure contribution. 



Electrostatic force between plates 
• Because the ions are “trapped” in the EDL – there is an analogy to 

being trapped behind a semi-permeable membrane – the osmotic 
pressure at the midplane is higher in the EDL by an amount 𝜋(x = 0).

• This simply says that the pressure inside the EDL between the plates 
is different from the pressure outside the plates by the difference in 
osmotic pressure. 

• The 𝜋∞ appears since the bulk solution will also have some finite 
ionic strength, even though it isn’t as high as that between the plates. 

• Since the fluid at x = 0 has a slightly higher pressure, it will push 
outward on the neighboring fluid, which in turn will push on the fluid 
all the way to the wall. The electrical forces on the fluid at x = 0 are 
zero, since by symmetry dΨ / dx = 0 there, and thus E = 0. 

• In the end the pressure force is the only force remaining: 



Electrostatic force between plates 

• evaluate the electrostatic force per area (fes). For plates with an area 
(A), we have 

• The Navier-Stokes equation is 

• Charges move due to a finite electric field, whether the charges are 
electrons or ions. As the local electric field becomes stronger – 
meaning that the voltage change with distance becomes steeper – 
the ions in that region move faster. 

Fluid velocityFluid density Fluid viscosity

isotropic pressure in the fluid 

Electrical charge density

Local electric field



Electrostatic force between plates 
• The job of finding the electrostatic force has thus been reduced to 

finding the pressure difference inside and outside the plate. 
• Osmotic pressure is a well-established thermodynamic property. The 

osmotic pressure of a solution with a dilute concentration of 
molecules or ions (n) is given by the van’t Hoff result: 

ion concentration (#/m3)



Π = −
𝜕𝐴!"!(𝑉)

𝜕𝑉

Let 𝐴!"! be the total free energy, 
consisting of solution with volume 
𝑉	and pure solvent of volume 𝑉!"! − 𝑉

The work done by semi-permeable membrane is −Π𝑑𝑉 

This must be equal to change in free energy d𝐴!"!

Thus, 

𝐴!"! = Vf ϕ + 𝑉!"! − 𝑉 f(0)

Π = −f ϕ + ϕ𝑓# ϕ + 𝑓(0)So

𝜕𝑓(𝑉$"%&!'𝑉 )
𝜕𝑉

= −𝑓′
𝑉$"%&!'
𝑉(

= −𝑓′
ϕ
𝑉

So that

f ϕ ≡
𝑓𝑟𝑒𝑒	𝑒𝑛𝑒𝑟𝑔𝑦

𝑣𝑜𝑙
	

Doi, Soft Matter Physics, 2013

of uniform soln 
w/ vol. fraction ϕ  

Membrane allows water, but 
not particles, to pass through

Remember: 𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉

Chain rule

Osmotic Pressure
Osmotic pressure is the minimum pressure which 
needs to be applied to a solution to prevent the 
inward flow of its pure solvent across 
a semipermeable membrane.

Note that ϕ = )!"#$%&
)  = *+

)



Recall for Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘,𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = )'

*!.('

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘,𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘,𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘,𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘,𝑇

= −𝑆/𝑘,

(const. involves L )

𝐸/= 0, for every state j

(N large)



Dilute Solution Expansion
Π =

𝑁𝑘,𝑇
𝑉

= 𝑣𝑘,𝑇 =
𝜙𝑘,𝑇
𝑧

𝑧	= vol. of solute

lowest order term:

(van’t Hoff’s law, analogous to ideal gas law )

Π = 01)2
+ + 𝐴(𝜙( + 𝐴3𝜙3 +….higher order 

expansion:

𝐴(, 𝐴3  = 2nd and 3rd virial coefficients

𝑁	= number of particles in V

ϕ = )!"#$%&
)  = *+

)

𝐴/𝑘,𝑇 ≈ 𝑁𝑙𝑛
𝑁
𝑉

𝐴 ≈ 𝑁𝑘,𝑇𝑙𝑛
𝑁
𝑉

Π = − 45%"%())
4)

≈ − 45 )
4)

+ 𝑓 0 ≈ 𝑁𝑘,𝑇
8
)
+ 0 = 𝑣𝑘,𝑇

Derivation:



Electrostatic force between plates 
• The job of finding the electrostatic force has thus been reduced to 

finding the pressure difference inside and outside the plate. 
• Osmotic pressure is a well-established thermodynamic property. The 

osmotic pressure of a solution with a dilute concentration of 
molecules or ions (n) is given by the van’t Hoff result: 

• Alternative derivation: the chemical potential of the water (solvent) 
decreases with the addition of solute, and increases with the addition 
of pressure (Δp), such that RTln(xw) + VmΔp = 0 at equilibrium, where 
Vm is the molar volume of the solvent. Recognizing the solute mole 
fraction x = 1 – xw = (#/NA)/V=n/NA and defining 𝜋 = Δp as the 
additional pressure required for equilibrium give the van’t Hoff 
result.

ion concentration (#/m3)



Electrostatic force between plates 
• Detailed alternative derivation:
• Chemical potential of solution: 

• Consider equilibrium between solution containing solute and solvent 
(water):

• For diluted (ideal) solution:

• where

𝜇(𝑥9, 𝑝 + 𝜋)

Mole fraction of water

𝜇 𝑥9, 𝑝 + 𝜋 = 𝜇:(𝑝)

𝜇 𝑥9, 𝑝 + 𝜋 = 𝜇: 𝑝 + 𝜋 + 𝑅𝑇𝑙𝑛(𝑥9)

𝜇: 𝑝 + 𝜋 = 𝜇: 𝑝 + ]
;

;<=
𝑉> 𝑝# 𝑑𝑝′

Molar volume (m3/mol)

Energy of 
expansion

−𝑅𝑇𝑙𝑛 𝑥9 = ]
;

;<=
𝑉> 𝑝# 𝑑𝑝′



Electrostatic force between plates 
• For incompressible liquid (water), molar volume is constant:

• Mole fraction of solute:

• For small x, ln(1-x) ≈ -x:

• Recall molar volume of solvent (water): 

𝑉> 𝑝# = 𝑉>

−𝑅𝑇𝑙𝑛 𝑥9 = ]
;

;<=
𝑉> 𝑝# 𝑑𝑝′ −𝑅𝑇𝑙𝑛 𝑥9 = 𝜋𝑉>

𝜋 = − ?2
)*
𝑙𝑛 𝑥9

𝑥 = 1 − 𝑥9 𝜋 = − ?2
)*
𝑙𝑛 1 − 𝑥

𝜋 ≈
𝑅𝑇𝑥
𝑉>

=
𝑅𝑇
𝑉>

𝑛
𝑛 + 𝑛9

≈
𝑅𝑇
𝑉>

𝑛
𝑛9

for small n

𝑉> ≡
1

𝑚𝑜𝑙𝑎𝑟	𝑐𝑜𝑛𝑐.
=
𝑁5
𝑛9

𝜋 ≈ 𝑛𝑅𝑇

Ion concentration (#/m3)

Water molecule concentration (#/m3)



Electrostatic force between plates 
• The job of finding the electrostatic force has thus been reduced to 

finding the pressure difference inside and outside the plate. 
• Osmotic pressure is a well-established thermodynamic property. The 

osmotic pressure of a solution with a dilute concentration of 
molecules or ions (n) is given by the van’t Hoff result: 

ion concentration (#/m3)



Electrostatic force between plates 
• The job of finding the electrostatic force has thus been reduced to 

finding the pressure difference inside and outside the plate. 
• Osmotic pressure is a well-established thermodynamic property. The 

osmotic pressure of a solution with a dilute concentration of 
molecules or ions (n) is given by the van’t Hoff result: 

• Now we simplify our analysis to a Z:Z binary electrolyte. 
• At x = 0, 

ion concentration (#/m3)

Contact value theorem: the pressure is given by the 
increase in the counterion concentration at the 
surfaces as they approach each other. 



Electrostatic force between plates 
• The job of finding the electrostatic force has thus been reduced to 

finding the pressure difference inside and outside the plate. 
• Osmotic pressure is a well-established thermodynamic property. The 

osmotic pressure of a solution with a dilute concentration of 
molecules or ions (n) is given by the van’t Hoff result: 

• Now we simplify our analysis to a Z:Z binary electrolyte. 
• At x = 0, 
• The values of n+ and n- are found from the Boltzmann factor for each 

ion or molecule, and the extra “2n∞” in the equation results since for 
a Z:Z electrolyte there is both a positive and negative ion in the bulk. 

ion concentration (#/m3)



The Boltzmann equation 

• The Boltzmann distribution predicts quantitatively what fraction of 
the time an entity – whether it is a stone, a gas molecule, or a 
colloidal particle – will spend in a local position of any given volume, 
given the energy at that local position. 

• For example, we know that gravitational potential energy is given by 
mgh, and assuming gravitational constant (g) is constant and the 
mass of the oxygen molecule (m) is identically the same, the higher 
value of h increases the energy, meaning higher altitude will give you 
less oxygen.

• In terms of concentration of ions, the Boltzmann equation says for ion 
type i, that 



Electrostatic force between plates 
• Rearrange (factoring):



Electrostatic force between plates 
• Rearrange (factoring):

• For low surface potentials, Taylor expand



Electrostatic force between plates 
• Rearrange (factoring):

• For low surface potentials, Taylor expand

• Evaluate Ψ at the midplane (x = 0) for the potential between two 
plates: 



• final case: the electric potential between two charged plates with 
boundary conditions

• This gives: 

Debye-Huckel results for electric potential 



Electrostatic force between plates 
• Rearrange (factoring):

• For low surface potentials, Taylor expand

• Evaluate Ψ at the midplane (x = 0) for the potential between two 
plates: 



Electrostatic force between plates 
• Because the ions are “trapped” in the EDL – there is an analogy to 

being trapped behind a semi-permeable membrane – the osmotic 
pressure at the midplane is higher in the EDL by an amount 𝜋(x = 0).

• This simply says that the pressure inside the EDL between the plates 
is different from the pressure outside the plates by the difference in 
osmotic pressure. 

• The 𝜋∞ appears since the bulk solution will also have some finite ionic 
strength, even though it isn’t as high as that between the plates. 

• Since the fluid at x = 0 has a slightly higher pressure, it will push 
outward on the neighboring fluid, which in turn will push on the fluid 
all the way to the wall. The electrical forces on the fluid at x = 0 are 
zero, since by symmetry dΨ / dx = 0 there, and thus E = 0. 

• In the end the pressure force is the only force remaining: 



Electrostatic force between plates 
• Putting all the pieces together now gives

• Putting this expression in terms of the Debye parameter,

 



The Poisson-Boltzmann (PB) equation 

• Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or 
Ca(SO4) (2:2),

• PB becomes                                               where 

• The very famous parameter 𝛋-1 is called “the Debye length”. It plays a 
key role in determining the electrostatic potential near a surface. 



Electrostatic force between plates 
• Putting all the pieces together now gives

• Putting this expression in terms of the Debye parameter,

• If we want to know the energy between two plates, we can 
integrate. Just as we know for gravity that the force F = -mg = dV/dh, 
we can integrate to find the gravitational potential energy V = mgh, 
the electrostatic potential energy per area is: 

• This integration leads to the final expression for the electrostatic 
energy per unit area between two plates:



Lecture 9 Poll: electrostatic 
interaction between plates 

Two plates have surface potentials of -24 mV in a solution with a Debye 
length of 4.2 nm. The plates are separated by 15.3 nm. What is the 
electrostatic potential energy per area and the electrostatic force per 
area on the plates, for T = 293 K? 
• A. Ves = -5.1×10-12 J/m2, fes = 0.0122 N/m2

• B. Ves = +5.1×10-12 J/m2, fes = 0.0122 N/m2

• C. Ves = -5.1×10-6 J/m2, fes = 1220 N/m2

• D. Ves = +5.1×10-6 J/m2, fes = 1220 N/m2

https://forms.gle/uSKR2NJUaE8kY1h48Long URL

Short URL https://shorturl.at/aLQT8

You need to log in using your umich.edu account in order to access this poll

https://forms.gle/uSKR2NJUaE8kY1h48
https://shorturl.at/aLQT8






Electrostatic force between plates 

• Hogg, Healy, and Fuerstenau (HHF) developed a more exact result 
between flat plates, for arbitrary but small surface potentials, and for 
any gap between the plates. Their result is 

• The first term in the brackets gives the interaction that is reducible to 
our results before. The second term includes additional physics 
resulting from an “image charge”, in which one charged surface 
actually induces a charge in the other material. For plates separated 
by a few Debye lengths, the first term decays roughly as exp(-𝛋h), 
while the second term decays more quickly as exp(-2𝛋h). 

https://pubs.rsc.org/en/content/articlelanding/1966/tf/tf9666201638



Spheres and the Derjaguin approximation 

• Having the electrostatic interaction energy between two flat plates 
enables us to proceed to the interaction between two spheres (Φes, 
in Joules). “Derjaguin approximation” estimates
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Spheres and the Derjaguin approximation 

• Having the electrostatic interaction energy between two flat plates 
enables us to proceed to the interaction between two spheres (Φes, 
in Joules). “Derjaguin approximation” estimates

• If the rings are chosen as differential in size, the 
summation can be converted into an integral as 
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Spheres and the Derjaguin approximation 

• Ordinarily this integral might be challenging analytically, but there is a 
helpful simplification that arises when the bottom of the spheres are 
approximated as parabolas. 

• Normally the equations for the upper (1) and lower (2) spheres are 
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Spheres and the Derjaguin approximation 

• Ordinarily this integral might be challenging analytically, but there is a 
helpful simplification that arises when the bottom of the spheres are 
approximated as parabolas. 

• Normally the equations for the upper (1) and lower (2) spheres are 

(0,0,-a)

(0,0,a+𝛿)

x

z

y

• Let
• The gap is
• an expansion gives 



Spheres and the Derjaguin approximation 

• Having the electrostatic interaction energy between two flat plates 
enables us to proceed to the interaction between two spheres (Φes, 
in Joules). “Derjaguin approximation” estimates

• If the rings are chosen as differential in size, the 
summation can be converted into an integral as 

(0,0,-a)

(0,0,a+𝛿)
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z
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Spheres and the Derjaguin approximation 

• Exchange the variable of integration from r to h:

• The upper limit is written as h → ∞, because its exact value need not 
be specified, since the integrand decays rapidly with h. 

 

(0,0,-a)

(0,0,a+𝛿)

x

z

y

• We have not yet specified anything 
particular to electrostatic forces. 
We will use this expression for 
other energies such as van der 
Waals energies, since in fact the 
expression is quite general. 



Curved surfaces & Thin Gaps: Derjaguin 
Approximation

https://en.wikipedia.org/wiki/Derja
guin_approximation

Treat a thin region of 
variable gap as a 
series of small 
regions with parallel 
flat surfaces, with 
each region having a 
different gap



Derjaguin Approximation for Two Spheres 

ℎ̀ 𝜌 = ℎ + 2 𝑅 − 𝑅( − 𝜌( ≈ ℎ +
𝜌(

𝑅

At position r, take a ring of width dr, with area 2prdr 

If we have a potential per unit area w(h) between flat 
surfaces, then the potential U(h) between spheres is  

𝑈 ℎ = ]
:

?
𝑤(ℎ̀)2π𝜌𝑑𝜌 𝑥 ≡ ℎ + @+

?  = ℎ̀new variable: 

𝑈 ℎ ≈ 𝜋𝑅]
A

B
𝑤( 𝑥)𝑑𝑥 𝐹 ℎ = −

𝜕𝑈 ℎ
𝜕ℎ

𝑈 ℎ = 2𝜋
𝑅8𝑅(
𝑅8 + 𝑅(

]
A

B
𝑤( 𝑥)𝑑𝑥Note: if spheres have 

unequal radii: 

𝑑𝑥 = 2𝜌𝑑𝜌/𝑅

= 𝜋𝑅𝑤(ℎ)

𝑅( − 𝜌( = R 1 − 𝜌(/𝑅( ≈ R(1 + 𝜌(/2𝑅()



Depletion Potential for spheres 
for flat plate:

𝑈 ℎ = 𝜋𝑅]
A

B
𝑤( 𝑥)𝑑𝑥for two spheres:

for spheres,  replace h with ℎ̀ 𝑥   

𝑈 ℎ = 𝑣𝑘,𝑇𝜋𝑅]
A

C
(𝑥 − 𝑑) 𝑑𝑥

𝑤 ℎ = 𝑣𝑘,𝑇 ℎ − 𝑑 , for	ℎ < 𝑑,
 =	0,  for	h		>	d

𝑤 ℎ = 𝑣𝑘,𝑇 ℎ̀ 𝑥 − 𝑑 , fork	ℎ 𝑥 < 𝑑,
 =	0,  for	ℎ̀ 𝑥 		>	d

volume of overlapping 
depletion regions

= −
1
2
𝑣𝑘,𝑇𝜋𝑅(𝑑 − ℎ)(

overlapping 
depletion region

Doi, Soft Matter Physics, 2013

d

remember, 𝑥 ≡ ℎ + @+

?  = ℎ̀

𝑣 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑒𝑝𝑙𝑒𝑡𝑎𝑛𝑡



Spheres and the Derjaguin approximation 

• Exchange the variable of integration from r to h:

• The upper limit is written as h → ∞, because its exact value need not 
be specified, since the integrand decays rapidly with h. 
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(0,0,a+𝛿)
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z

y

• Using the expression for Ves, 
integration gives the electrostatic 
energy between two spheres:

• This result is the one we have been 
after for the entire lecture. 

 



Electrostatic forces
• Between two particles of radius (a), the electrostatic energy 

(ΦES) resulting from the electrical potentials on a particle 
separated by a distance of closest approach (𝛿) is approximated 
by 

Electrical permittivity

Fluids with higher dielectric 
constants give larger electrostatic 

interactions energies, not only since 
ε appears in equation above, but also 
since particles tend to become more 
highly charged – and therefore have 

a larger magnitude of surface 
potential – in these fluids. 

From Lecture 4:



Spheres and the Derjaguin approximation 

• Exchange the variable of integration from r to h:

• The upper limit is written as h → ∞, because its exact value need not 
be specified, since the integrand decays rapidly with h. 

 

(0,0,-a)

(0,0,a+𝛿)
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z

y

• Using the expression for Ves, 
integration gives the electrostatic 
energy between two spheres:

• The corresponding electrostatic 
force is:



Electrostatic force between plates 
• Putting all the pieces together now gives

• Putting this expression in terms of the Debye parameter,

• If we want to know the energy between two plates, we can integrate. 
Just as we know for gravity that the force F = -mg = dV/dh, we can 
integrate to find the gravitational potential energy V = mgh, the 
electrostatic potential energy per area is: 

• This integration leads to the final expression for the electrostatic 
energy per unit area between two plates:



Spheres and the Derjaguin approximation 

• If a more precise result is need, but still for small surface potentials 
with magnitude less than about 50 mV, we can use the HHF result for 
spheres: 

(0,0,-a)

(0,0,a+𝛿)

x

z

y the HHF force can be found from differentiating Φes 



Example: Electrostatic potential energy 
between spheres 

(0,0,-a)

(0,0,a+𝛿)

z

y

Two 1.2 µm diameter spheres have surface potentials of -24 mV in 
a solution with a Debye length of 4.2 nm. The spheres are 
separated by 15.3 nm. What is the potential energy between the 
spheres, for T = 293 K? 





Constant charge vs. constant potential

• For large distances (several Debye lengths) between the interacting particles, 
there's no difference.

• For small distances, the first particle affects the electrostatic potential at the 
surface of the second, causing change of the adsorption of all ionic species 
there.

• Constant charge means that the adsorbed charge does not change. This 
corresponds to the highest possible interaction (highest repulsion, in case of 
two equivalent surfaces).

• In reality, when two positively charged particles are close to each other, 
the repulsion leads to the positive ions being desorbed (or similarly, negative 
ions being adsorbed). This leads to smaller interaction.

• The largest decrease one can get is the one between metal particles of fixed 
potential (two grounded spheres). Theory says you cannot get a larger 
drop of the surface charge then this fixed surface potential case.

• The reality is always between these two limiting cases.



Surface charge density using Debye-Huckel 
• A similar analysis around a sphere gives

• Between parallel plates having a surface potential (Ψ0) and separated  
by a distance (L), the surface charge density is given by

• If L → ∞ this reduces to the flat plate limit:

• Solving for Ψ0:

• As L → 0 this equation becomes singular, meaning that a very large 
potential must arise from a finite ρs for small gaps between plates. 





Dielectric media (organic fluids) 

• Electrostatic interactions in dielectric media like organic fluids can be 
much different from that in aqueous fluids. There are several reasons 
for this: 

• (1) Obtaining any charges in dielectric media is hard to do. An 
important parameter arises from comparing the electrostatic energy 
(Ves) of two ions in solution (Coulomb’s law, Ves = (z1e)(z2e)/(4𝜋εr), for 
a separation (r) between the ions) with the thermal energy (kT) which 
tends to randomize ion positions throughout the solution. 

• If we equate these energies, we find for a symmetric Z:Z electrolyte a 
distance (𝜆B), known as the Bjerrum length, given by 

https://www.sciencedirect.com/science/article
/pii/092777579380026B



Dielectric media (organic fluids) 

• In water at room temperature, 𝜆B = 0.70 nm. Thus, if I have NaCl 
dissociated into Na+ and Cl-, the ions have to be really close – in fact 
closer than water solvation allows – in order for them to form NaCl 
again (that’s why NaCl dissolves easily in water). 

• In contrast, in hexane with a relative permittivity of 2.0, 𝜆B = 28 nm. 
Thus, the ions can be spaced far apart and still attract each other 
back into NaCl. 

• Interestingly, if we assume that we have one ion pair in a volume 
1/𝜆B

3 , then we can estimate a saturation concentration, which scales 
as 1/Z6. In water we find a saturation concentration for Z = 1 of 4.8 M. 
The actual saturation concentration of NaCl is 5.4 M, and for KCl it is 
4.2 M. When 𝜆B = 28 nm, the saturation concentration for Z = 1 is 
0.075 mM, and actual concentrations in dielectric media are usually 
much lower. 

https://www.sciencedirect.com/science/article
/pii/092777579380026B



Dielectric media (organic fluids) 

• (2) The Debye length in the fluid can be micrometers, which is 
frequently larger than the particles of interest. Thus, colloidal 
particles can look like point charges electrostatically. 

• (3) The time required for electrostatic operations can be much 
longer than usual. The free charge relaxation time (tfcr) is given by

• In 10 mM aqueous KCl near room temperature, the permittivity   

while the electrical conductivity is                            , giving tfcr = 5 ns.
• In organic media,                                                          but                       or 

often much less giving tfcr ~ 1 s or much more. 
• Thus, dielectric media respond to electric fields slowly. 

https://www.sciencedirect.com/science/article
/pii/092777579380026B

permittivity
conductivity



Dielectric media (organic fluids) 

• (4) Most fixed charges on particles in aqueous suspensions are firmly 
bound; in organic media, the charges can detach more readily from 
the particle surface, meaning that the “fixed charge” is not always 
stable. 

• In fact, to stabilize particles, one usually must add particular 
surfactants that produce charge in dielectric media. Perhaps the best 
known of these is Aerosol OT (AOT, with a technical name dioctyl 
sodium sulfosuccinate, giving a conductivity ~20 nS/cm), although 
there are others such as OLOA by Chevron or the nonionic Span 85 
from Sigma Aldrich that can give conductivities more than 10 times 
higher. These surfactants can provide enough charge to stabilize 
many suspensions of particles in dielectric media. Note that all of 
these conductivities are still low. 

dioctyl sodium sulfosuccinate Span 85
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