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Electrical double layer

Poisson-Boltzmann equation
* Poisson equation, relate potential change to charge density
* Boltzmann equation, relate ion distribution to potential energy
e Poisson-Boltzmann: self-consistent description of electrostatic potential inside EDL, given bulk ion concentration (C..), introduce Debye length (k)

Debye-Huckel

*  For small surface potential and binary electrolyte, PB simplifies to Debye-Huckel, which give exponential decay of electrostatic potential (W(x))
from surface potential (W) inside EDL with characteristic length (k%)

*  Debye-Huckel (W(x)) solutions for 1 plate, 1 sphere, between 2 plates

Surface charge density (p.) for 1 plate
* Electroneutrality gives relation between (p.) and (W,)
» Differentiate Boltzmann and use PB equation to relate total ion concentration at surface of 1 pate (C,) to (C..) and (p.)
* Grahame equation, relate (p.) to (W,) and (C..)
* Inbinary electrolyte, example of Grahame used to calculate (Cp) from (W;) and (C..) with fixed (p.)
*  Forlow (W) and binary electrolyte, Grahame simplifies to (p.) = ek(W,)
» Differentiate Boltzmann and use PB equation also relates individual ion concentration (C(x)) to electrostatic potential (W(x))
*  For binary electrolyte, this simplifies to Gouy-Chapman’s solution to (W(x)), allow us to plot EDL: (C(x)), (Cio(x)), (W(x)), (W,), given (p.) and (C..)
*  Forlow (W,) and binary electrolyte, Gouy-Chapman simplifies to Debye-Huckel, completing the full circle

Surface charge density (ps) using Debye-Huckel (low (W) and binary electrolyte assumed)
* Direct plugging Debye-Huckel into electroneutrality for 1 plate will also give simplified Grahame: (p.) = ex(W,)
* Surface charge density (p.) using Debye-Huckel for 1 sphere, for 2 plates: for finite (p.), (W,) > e asgap > 0

Electrostatic force per area (fos) between 2 plates
*  Origin (contact value theorem): increased ionic concentration in gap = increased osmotic pressure (1) exerted on plates
* Navier-Stokes equation for static fluid reduces to balance of pressure and electrical forces on the fluid
* Navier-Stokes + Poisson equations relates () to electric field (dW(x)/dx)
e Navier-Stokes + Poisson + Boltzmann equations solve (1) as a function of (W(x)) and (C..)
*  Forlow (W,) and binary electrolyte, solution simplifies to (1) ~ ex(W(x))?
*  Plug in Debye-Huckel for 2 plates for ({(x)) to obtain exponential decay of electrostatic force per area (f,;) with characteristic length (k)
* Integrate (f.,) for electrostatic energy per unit area (V,,) between 2 plates

Electrostatic energy (®.s) between 2 spheres and the Derjaguin approximation
*  Apply the Derjaguin approximation to obtain the electrostatic energy (®..) between 2 spheres
» Differentiate to calculate the electrostatic force (F.;) between 2 spheres
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Electrostatic force between plates

re-arranged version of the Poisson equation
d2

e
dx

make a substitution for the volumetric charge density to give

d_p_g d*y (dl//)
dx  \dx® \ dx

pe=-

the x-direction Navier-Stokes equation withv =0 s

dy
P HhE =—p 2
dx pe X p(,’ dx

This gives the balance of pressure and electrical forces on the fluid.
Where the fluid is static, these two forces balance at every position.




Electrostatic force between plates

e re-arranged version of the Poisson equation
2
4y
dx
e make a substitution for the volumetric charge density to give
d_p_g d*y (dl//)
dx dx* \ dx

e Recall from the chain rule

o)) %) = | 2-2 2]

integrate (

pe=-

——> p=—




Electrostatic force between plates

The easiest place to evaluate B is at the midplane, where by
symmetry we know that dW / dx = 0. Therefore B is the pressure at x
= 0.

What contributes to this pressure? If the plates were uncharged, the
pressure at the midplane would be simply the ambient pressure (p..).

As charges are added to the plate, bringing additional ions into the
electrical double layer region between the plates, there is also an
osmotic pressure contribution.
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Electrostatic force between plates

Because the ions are “trapped” in the EDL — there is an analogy to
being trapped behind a semi-permeable membrane — the osmotic
pressure at the midplane is higher in the EDL by an amount 7t(x = 0).

p(x=0)-p, =7(x=0)-7,
This simply says that the pressure inside the EDL between the plates

is different from the pressure outside the plates by the difference in
osmotic pressure.

The .. appears since the bulk solution will also have some finite
ionic strength, even though it isn’t as high as that between the plates.

Since the fluid at x = 0 has a slightly higher pressure, it will push
outward on the neighboring fluid, which in turn will push on the fluid
all the way to the wall. The electrical forces on the fluid at x =0 are
zero, since by symmetry d¥ / dx = 0 there, and thus E = 0.

In the end the pressure force is the only force remaining:
fe=p.—plx=0)



Electrostatic force between plates

evaluate the electrostatic force per area (f,). For plates with an area

(A), we have
f..=-limF/A=1limF,/A

A—o A—o

The Navier-Stokes equation is

isotropic pressure in the fluid Local electric field

ov e
Pl —+V-vw|=nVv-Vp+p E=0

2N

Fluid density Fluid viscosity Fluid velocity Electrical charge density

Charges move due to a finite electric field, whether the charges are
electrons or ions. As the local electric field becomes stronger —
meaning that the voltage change with distance becomes steeper —
the ions in that region move faster.



Electrostatic force between plates

The job of finding the electrostatic force has thus been reduced to
finding the pressure difference inside and outside the plate.

Osmotic pressure is a well-established thermodynamic property. The
osmotic pressure of a solution with a dilute concentration of
molecules or ions (n) is given by the van’t Hoff result:

7 =nkT

!

ion concentration (#/m3)



Osmotic pressure is the minimum pressure which
needs to be applied to a solution to prevent the

inward flow of its pure solvent across O S m Ot | C P re S S u r Membrane allows water, but

a semipermeable membrane. not particles, to pass through

Let A.,: be the total free energy, AR /

consisting of solution with volume iy =

V and pure solvent of volume Vi, =V |oe’e %
Remember: d4 = —SdT — pdV v ViV

Doi, Soft Matter Phyéibs, 2013
The work done by semi-permeable membrane is —I1dV

This must be equal to change in free energy dA;,;

Thus, | = — 0A¢o: (V) () = free energy of uniform soln

aVv vol w/ vol. fraction ¢
Atot — Vf((l)) + (Vtot — V)f(O) NOte that (I) — Vsolute — E
Vsotut v v
sothat SV ) _ _prlsotute _f'g
av V2 vV

So II=-f(p)+df'(p)+ f(0) Chain rule



Recall for Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed
A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=
number density

N
A/kgT = —S/kg = Nin (7) = Nin(v) + const

A/(VkgT) = vin(v) + const

Pressure P = vkgT



Dilute Solution Expansion

NkgT kgT
lowest order term: | 1 = VB = vkgT = s
Z
N = number of particles in V 7z = vol. of solute
(van’t Hoff's law, analogous to ideal gas law ) _ Vsotute _ Nz
. vV vV
higher Qrder I = ¢kBT_I_A2¢2 + Asp3 +....
expansion: Z

A,, A; = 2" and 3" virial coefficients

Derivation: .

A ~ NknTl (N)
~ BnV

aAtot(V) __0A (V)

II'=-— v




Electrostatic force between plates

The job of finding the electrostatic force has thus been reduced to
finding the pressure difference inside and outside the plate.

Osmotic pressure is a well-established thermodynamic property. The
osmotic pressure of a solution with a dilute concentration of
molecules or ions (n) is given by the van’t Hoff result:

7 =nkT

!

ion concentration (#/m3)

Alternative derivation: the chemical potential of the water (solvent)
decreases with the addition of solute, and increases with the addition
of pressure (Ap), such that RTIn(x,,) + V,Ap = 0 at equilibrium, where
V,, is the molar volume of the solvent. Recognizing the solute mole
fraction x =1 —x,, = (#/N,)/V=n/N, and defining T = Ap as the
additional pressure required for equilibrium give the van’t Hoff
result.




Electrostatic force between plates

Detailed alternative derivation:
Chemical potential of solution: ,U(XW; p + 7T)

!

Mole fraction of water

Consider equilibrium between solution containing solute and solvent
(water):

u(xy,p +m) = u°(p)
For diluted (ideal) solution:

uCew, p + 1) = u(p + 1) + RTIn(xy,)

p+m
where Mo(p + 1) = ‘uo(p) + f Vm(p’)d}’)’_> Energy of

D | expansion

p+m Molar volume (m*/mol)

——> —RTIn(x,,) =j V., (p))dp’
D



Electrostatic force between plates

For incompressible liquid (water), molar volume is constant: Vm(p') =V,

p+TT
—RTIn(x,,) = J V(p)dp' == —RTIn(x,,) = nV,,
p RT
—) T =-— V—ln(xw)
Mole fraction of solute: X =1 —Xx,, —— T = — Eln(l — X)

Vm
lon concentration (#/m3)

RTx_RT n RT n

For small x, In(1-x) = -x: T ~ — ~ for small n
Vin Vi n+ M Vim Ny

Water molecule concentration (#/m3)

1 N,
molar conc. ny,

Recall molar volume of solvent (water): V,, =

—— 1 = nRT



Electrostatic force between plates

The job of finding the electrostatic force has thus been reduced to
finding the pressure difference inside and outside the plate.

Osmotic pressure is a well-established thermodynamic property. The
osmotic pressure of a solution with a dilute concentration of
molecules or ions (n) is given by the van’t Hoff result:

T =nkT

!

ion concentration (#/m3)



Electrostatic force between plates

The job of finding the electrostatic force has thus been reduced to
finding the pressure difference inside and outside the plate.

Osmotic pressure is a well-established thermodynamic property. The
osmotic pressure of a solution with a dilute concentration of
molecules or ions (n) is given by the van’t Hoff result:

7 =nkT

!

ion concentration (#/m3)

Now we simplify our analysis to a Z:Z binary electrolyte.
Atx=0, 7-=z, =(n +n_—2n )kT

Contact value theorem: the pressure is given by the
increase in the counterion concentration at the
surfaces as they approach each other.




Electrostatic force between plates

The job of finding the electrostatic force has thus been reduced to
finding the pressure difference inside and outside the plate.

Osmotic pressure is a well-established thermodynamic property. The
osmotic pressure of a solution with a dilute concentration of
molecules or ions (n) is given by the van’t Hoff result:

7 =nkT

!

ion concentration (#/m3)

Now we simplify our analysis to a Z:Z binary electrolyte.
Atx=0, 7-=m, = (n+ +n_—2n kT
The values of n* and n- are found from the Boltzmann factor for each

ion or molecule, and the extra “2n..” in the equation results since for
a Z:Z electrolyte there is both a positive and negative ion in the bulk.

-7, =N, exp(ze—w)+exp(_zew)—2 kT
kT kT




The Boltzmann equation

The Boltzmann distribution predicts quantitatively what fraction of
the time an entity — whether it is a stone, a gas molecule, or a
colloidal particle — will spend in a local position of any given volume,
given the energy at that local position.

For example, we know that gravitational potential energy is given by
mgh, and assuming gravitational constant (g) is constant and the
mass of the oxygen molecule (m) is identically the same, the higher

value of h increases the energy, meaning higher altitude will give you
less oxygen.

In terms of concentration of ions, the Boltzmann equation says for ion

type i, that
= Ei (x/ Y, Z)j
\ kT

(— 7.
=C,, exp zley/j
\ kT

¢, (x, y,z): Cis €XP




Electrostatic force between plates

e Rearrange (factoring):

2
w—n,=nkT exp(ze'//) —exp(_ Ze'//)
2kT 2kT




Electrostatic force between plates

e Rearrange (factoring):
Ze —Zey ’
n—n,=n_kT exp( '//) —exp( )
2kT 2kT

e For low surface potentials, Taylor expand e* =1+w+w’/2+...

2
w—n, =nkT 1+Zel/l+... - 1_Ze;11+m
2kT 2kT

Z*e’n,
7




Electrostatic force between plates

Rearrange (factoring):
Ze —Zey ’
ﬂ—%n=m$T€ﬁ{ W)—wm( )
2kT 2kT

For low surface potentials, Taylor expand e” =1+w+w*/2+...

2
w—m, =nkT 1+Zel//+... - 1_Ze;11+m
2kT 2kT

Z*e’n,
“Tar 7

Evaluate W at the midplane (x = 0) for the potential between two
plates:




Debye-Huckel results for electric potential

e final case: the|electric potential between two charged plates with
boundary conditions

x=-L/2:y=y,, x=L/2:y =y,

e This gives:

+d. /2 /2
W= v,e —y,€ o=
e+xL _e—KL

+id/2 L2
m v.€ —y,€ o
+xL —xL

€ —e




Electrostatic force between plates

Rearrange (factoring):
Ze —Zey ’
w—n,=nkT exp( '//) - exp( )
2kT 2kT

For low surface potentials, Taylor expand e” =1+w+w*/2+...

2
w—m, =nkT 1+Zel'l/+... - 1—Ze¥/+...
2kT 2kT

_Z’e’n, ,
T 7
Evaluate W at the midplane (x = 0) for the potential between two
plates:

—xh/2

W(x = 0) - xh ——xh o 2!//06




Electrostatic force between plates

Because the ions are “trapped” in the EDL — there is an analogy to
being trapped behind a semi-permeable membrane — the osmotic
pressure at the midplane is higher in the EDL by an amount m(x = 0).

p(x=0)-p, =7(x=0)-7,
This simply says that the pressure inside the EDL between the plates

is different from the pressure outside the plates by the difference in
osmotic pressure.

The .., appears since the bulk solution will also have some finite ionic
strength, even though it isn’t as high as that between the plates.

Since the fluid at x = 0 has a slightly higher pressure, it will push
outward on the neighboring fluid, which in turn will push on the fluid
all the way to the wall. The electrical forces on the fluid at x =0 are
zero, since by symmetry dW¥ / dx = 0 there, and thus E = 0.

In the end the pressure force is the only force remaining:
fes = Pow — p(x = O)




Electrostatic force between plates

e Putting all the pieces together now gives

47%e’n, vie
kT
e Putting this expression in terms of the Debye parameter,

fo=n(x=0)-7, =

2.2 —kh

f.. =2ex‘y e




The Poisson-Boltzmann (PB) equation

Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or
Ca(S0,) (2:2),

z, =-2,=2 c,,=C,=C, sinhx = (e" — e"‘)/Z

,  2Z%’°c,
&T

PB becomes Vz(z—e'/i) =k’ sinh ey where||x
kT kT

The very famous parameter k' is called “the Debye length”. It plays a
key role in determining the electrostatic potential near a surface.



Electrostatic force between plates

Putting all the pieces together now gives
422 2
227 Ry 2e
kT
Putting this expression in terms of the Debye parameter,

fo=n(x=0)-7, =

_ 2.2 —xh
f.. =2ex‘y e

If we want to know the energy between two plates, we can
integrate. Just as we know for gravity that the force F = -mg = dV/dh,
we can integrate to find the gravitational potential energy V = mgh,
the electrostatic potential energy per area is:

0 h o0

V. =- J' f .dh' = j f.dh' = 2gx2y/§je—"h'dh'
h 00 h

This integration leads to the final expression for the electrostatic

energy per unit area between two plates:

|

V,.=2¢exyie™ =x"f,




You need to log in using your umich.edu account in order to access this poll

Lecture 9 Poll: electrostatic
interaction between plates

Two plates have surface potentials of -24 mV in a solution with a Debye
length of 4.2 nm. The plates are separated by 15.3 nm. What is the
electrostatic potential energy per area and the electrostatic force per

area on the plates) for T = 293 K? Table 1-3. Static (zero frequency) electrical permittivities for several
liquids. The permittivity of vacuum is g = 8.8542x10'2 C2/N-mZ.

- -12 2 - 2 For most liquids the electrical permittivity () is represented by a
° = - =
A. Ves 5.1x10 J/ me, fes 0.0122 N/ m multiple of & called the “dielectric constant’ and a “relative
— -12 2 - 2 permittivity” (&7). For example, at 20 C water has & = 80.1, and so
e B.V,=+5.1X%X1012)/m? f,, =0.0122 N/m? {7 permittivity of water at 20 C is 80.1¢ = 7.09x10-1° C/N-m2. The
static dielectric constant depends weakly on temperature.’?
[ ) - - x '6 2 = 2
C. Ves 5.1 10 J/m , fes 1220 N/m fluid &atT= &atT= dielectric constant (&)
o D.Vg=+5.1X106J/m? f, = 1220 N/m? we  asc at T (C)
acetone 21.2 20.7 & =21.2exp[-0.00472(T - 20)]
= ammonia 17.4 16.9 &=17.4-0.090(T - 20)
f;s = 2&K 2(// g e benzene 2284 2274 & =2.284—0.0020(T - 20)
cyclohexane 2.023 2.015 &=2.023-0.0016(T-20)
2 _—xh -1 ethanol 25.1 243 &=25.1exp[-0.006217(T — 20)]
V. =2¢exypy e =k ’
£s Yo f €s methanol 33.62 32.63 & = 33.62exp[-0.00599(T-20)]
water 80.37 78.54 &=80.37exp[-0.004605(T— 20)]
2 2
, 27Z%°c,
K™= T Long URL https://forms.gle/uSKR2NJUaE8kY1h48

Short URL https://shorturl.at/aLQT8



https://forms.gle/uSKR2NJUaE8kY1h48
https://shorturl.at/aLQT8

Two plates have surface potentials of -24 mV in a solution with a Debye length of 4.2 nm. The plates

are separated by 15.3 nm. What is the electrostatic ...static force per area on the plates, for T = 293 K?
13 responses

® V_es=-51E-12 J/(m*2), f_es =0.0122

N/(mA2)

@® V_es=+5.1E-12 J/(m"2), f_es =0.0122
N/(mA2)

@ V_es =-5.1E-6 J/(m"2), f_es = 1220 N/
(m*"2)

@ V_es = +5.1E-6 J/(m"2), f_es = 1220 N/
(m*2)




answer: Ves = +5.1x10°° J/m?, fes = 1220 N/m? = 0.177 psi.

45 1 2 . 15.3
2 80.37 » 8.8542 - 10 (—) (-24 10 )exp(——)-4.2
42.10°° 4.2

Result

5.10945... x 10°°

2..80.37 - 8.8542 102 (—
42 10°°

Result

1216.53...

10



Mutual Coagulation of Colloidal Dispersions *
2 F t https://pubs.rsc.org/en/content/articlelanding/1966/tf/tf9666201638

By R. HoGgG, T. W. HEALY { AND D. W. FUERSTENAU
Dept. of Mineral Technology, University of California, Berkeley, California

Received 27th September, 1965

Electrostatic force between plates

e Hogg, Healy, and Fuerstenau (HHF) developed a more exact result
between flat plates, for arbitrary but small surface potentials, and for
any gap between the plates. Their result is

2u.w ) 2( coshxh)
V — 1 17 2 1 _
©2 8’{ sinhidt | (% e sinhxh

e The first term in the brackets gives the interaction that is reducible to
our results before. The second term includes additional physics
resulting from an “image charge”, in which one charged surface
actually induces a charge in the other material. For plates separated
by a few Debye lengths, the first term decays roughly as exp(-kh),
while the second term decays more quickly as exp(-2kh).




Spheres and the Derjaguin approximation

Having the electrostatic interaction energy between two flat plates
enables us to proceed to the interaction between two spheres (D,
in Joules). “Derjaguin approximation” estimates

cpe =V (h, =)l +V, (b 27 Ar
V. (h, )ZﬂrZAr+V( A+

Figure 2-3. Derjaguin approximation.
Each ring is treated as flat with a width
Ar, interacting with “flat ring” opposite it.
Since potential energy between flat
plates is expressed as energy per area
(e.g., Eq 2-41), the energy for each ring
is found by multiplying by its area, and
the total potential energy is summed
from all the rings. In fact the size of
each ring is taken as a differential
element of area so that the result is
integrated.




Spheres and the Derjaguin approximation

Having the electrostatic interaction energy between two flat plates
enables us to proceed to the interaction between two spheres (D,
in Joules). “Derjaguin approximation” estimates

D, = (h =8)wl +V, (b 2 Ar
V. (h, )ZﬂrZAr+V( A+

e |f the rings are chosen as differential in size, the
summation can be converted into an integral as

@, = [V.[nr)pmir
0




Spheres and the Derjaguin approximation

Ordinarily this integral might be challenging analytically, but there is a

helpful simplification that arises when the bottom of the spheres are
approximated as parabolas.

Normally the equations for the upper (1) and lower (2) spheres are

x* +vy? +(z,—a-6) =

@ 7



Spheres and the Derjaguin approximation

Ordinarily this integral might be challenging analytically, but there is a

helpful simplification that arises when the bottom of the spheres are
approximated as parabolas.

Normally the equations for the upper (1) and lower (2) spheres are

e let r*=x>+y?

The gapis h=2z,-2z,

an expansion gives

zl=a+5—\/azfr2

=a+5—am

=a za+5—a(1—r2/2a2)
— z, ~x8+r’/2a z,~-r"/2a

—— h=z-2z,~8+r’/a




Spheres and the Derjaguin approximation

Having the electrostatic interaction energy between two flat plates
enables us to proceed to the interaction between two spheres (D,
in Joules). “Derjaguin approximation” estimates

D, = (h =0)wl +V, (b 2 Ar
V. (h, )2W2Ar+V (b, 27, AF + ..

e |f the rings are chosen as differential in size, the
summation can be converted into an integral as

@, = [V.[nr)pmir
0




Spheres and the Derjaguin approximation

e Exchange the variable of integration fromrtoh: dh =2rdr/a

IV [W(r)Rmrdr =—=

¢es ~ 7 Io{/es (h )dh
)

e The upper limit is written as h - oo, because its exact value need not
be specified, since the integrand decays rapidly with h.

o}
5 l =

2

X +y*+(z,—a-6) =

——»I’

\
X2 +y? +(z, +af =a®

2

We have not yet specified anything
particular to electrostatic forces.
We will use this expression for
other energies such as van der
Waals energies, since in fact the
expression is quite general.



Curved surfaces & Thin Gaps: Derjaguin

Approximation
X
\ N
R Treat a thin region of
' variable gap as a
| [ series of small
. regions with parallel
—— y h y R-y flat surfaces, with
" 7 each region having a
| L o different gap
H ' : I https://en.wikipedia.org/wiki/Derja
'.\'.l“ '.\f ‘,"I';' r guin_approximation
F. N -



Derjaguin Approximation for Two Spheres h(p)
pz | 1) R

ﬁ(p)=h+2(R—\/R2—p2)zh+E /\

JRZ — p%2 = R{J1—p2/R2 = R(1 + p*/2R?)

At position p, take a ring of width dp, with area 2zpdp

If we have a potential per unit area w(h) between flat
surfaces, then the potential U(h) between spheres is
R

UCh) = j w(h)2mpdp new variable: x = h + p?f =h
L dx = 2pdp/R
© dU(h
U(h) =~ nRJ w(x)dx  F(h) = —% = mRw(h)
h

Note: if spheres have . R{R; >
unequal radii: UCh) = 2m R, + szh w( x)dx




Depletion Potential for spheres

v = concentration of depletant
for flat plate: w(h) = vkgT(h — d),for h < d,

— Doi, Soft Matter Physics, 2013
_0, fOI"h >d oi, So aera‘ ysics

for spheres, replace h with h(x)

w(h) = kaT(ﬁ(x) — d), for h(x) < d,
=0, forh(x) >d

00)

for two spheres: | U(h) = R d overlapping
WO SPp (2) ~7T jhw(x) X depletion region

0N
remember, x = h + ”? =

d
U(h) = kaTT[RJh (X — d) d)(," — —%UkBTT[R(d _ h)z

volume of overlapping
depletion regions




Spheres and the Derjaguin approximation

e Exchange the variable of integration fromrtoh: dh =2rdr/a

IV [W(r)Rmrdr =—=

¢es ~Tm J‘Oi)/es (h )dh
)

e The upper limit is written as h - oo, because its exact value need not
be specified, since the integrand decays rapidly with h.

o}
5 l =

2

X+y’+(z,—a-56)\=a> o

——»I’

\
X2 +y? +(z, +af =a®
([

Using the expression for V.,
integration gives the electrostatic
energy between two spheres:

2;(5

D, =2reay,e

This result is the one we have been
after for the entire lecture.



From Lecture 4:

Electrostatic forces

e Between two particles of radius (a), the electrostatic energy
(D) resulting from the electrical potentials on a particle
separated by a distance of closest approach (9) is approximated

by D, =2meay e
$

KO

|
Electrical permittivity

Fluids with higher dielectric
constants give larger electrostatic
interactions energies, not only since
€ appears in equation above, but also
since particles tend to become more
highly charged — and therefore have
a larger magnitude of surface
potential — in these fluids.

Table 1-3. Static (zero frequency) electrical permittivities for several
liquids. The permittivity of vacuum is g = 8.8542x10'2 C?/N-m?.
For most liquids the electrical permittivity (&) is represented by a
multiple of & called the “dielectric constant” and a “relative
permittivity” (&). For example, at 20 C water has & = 80.1, and so
the permittivity of water at 20 C is 80.1£0 = 7.09x10°'° C%/N-m?. The
static dielectric constant depends weakly on temperature.'?

fluid gatT= sGatT= dielectric constant (&)
20C 25C at T (O)

acetone 21.2 20.7 & =21.2exp[-0.00472(T - 20)]
ammonia 17.4 16.9 &=17.4-0.090(T - 20)
benzene 2.284 2.274 & =2.284—0.0020(T - 20)
cyclohexane 2.023 2.015 &=2.023-0.0016(T - 20)
ethanol 25.1 243 & =25.1exp[-0.006217(T - 20)]
methanol 33.62 32.63 & = 33.62exp[-0.00599(7-20)]
water 80.37 78.54 & =80.37exp[-0.004605(7—20)]




Spheres and the Derjaguin approximation

e Exchange the variable of integration fromrtoh: dh =2rdr/a

j V W) ewdr = & ~m Ij/es(h)dh

e The upper limit is written as h - oo, because its exact value need not
be specified, since the integrand decays rapidly with h.

o}
5 l =

2

X+y’+(z,—a-56)\=a> o

——»I’

\
X2 +y? +(z, +af =a®
([

Using the expression for V,
integration gives the electrostatic
energy between two spheres:

21(5

D, =2reay,e

The corresponding electrostatic
force is:

E, =2naakyie™ = k@,




Electrostatic force between plates

Putting all the pieces together now gives

47%e*n, , _
o Voe ™

Putting this expression in terms of the Debye parameter,

fo=n(x=0)-zx, =

B 2.2 —xh
f.. =2ex‘y e

If we want to know the energy between two plates, we can integrate.
Just as we know for gravity that the force F = -mg = dV/dh, we can
integrate to find the gravitational potential energy V = mgh, the
electrostatic potential energy per area is:

0 h 0
V. = -j f .dh' = J' f.dW' = 2exy? j e dh’
h 00 h
This integration leads to the final expression for the electrostatic

energy per unit area between two plates:

|

2 _—xh
VeszngWOe =K fes




Spheres and the Derjaguin approximation

If a more precise result is need, but still for small surface potentials
with magnitude less than about 50 mV, we can use the HHF result for
spheres:

| 1+e™
0] =7zg(—a1a2 JZl//ll/lz I 1-e™™

[ P 7 B I ()

the HHF force can be found from differentiating @




Example: Electrostatic potential energy
between spheres

Two 1.2 um diameter spheres have surface potentials of -24 mV in
a solution with a Debye length of 4.2 nm. The spheres are
separated by 15.3 nm. What is the potential energy between the
spheres, for T = 293 K?

v In 1+e7™
D = 27[&1;1/026_"5 @, =m{ a,a, j 172 1

S |+ (y/f +y2)in(1-e )_

answer: @es = 4.04x10%° J = 10.0 kT for the simple expression. The
HHF gives @es = 3.99x10%° J = 9.87 kT, quite close (1.3% difference),

since the gap is large relative to k! while still being small relative to a.

For gaps with 6 less than 2, the HHF result for spheres will give

important differences, due to the image charge term.




10" r The electrostatic repulsion between two
identical charged plates immersed in ionic
solutions. Results are shown for two differer

charge  surface potentials calculated according to th
exact theory and the non-linear superpositic
approximation (broken lines).

Real (hard) life: Surface
charge may change
during the approach

10'

Constant charge > constant potential

10°
A large variety of electrostatics interaction
formulae are available — but pay £
attention to approximations and
range of validity .
Force
Geometry Constraint cxpression D
Two flat plates  Superposition (4.94) 64k Ty~ "tanh’ (3, exp( — xh)
VT2 W4
Two spheres Constant potential  (4.10.10) 23/:,:,‘ ‘% ) a¥iin(l4+¢™ ™) 2
Two spheres Constant charge (4.10.11) ~ qu..( ’i .):aq’ In(1—e Y
\ 3¢
' 5 (kT a*
Two spheres Linear superposition (4.10.12) 4nuo( .;) e h'l’_’ expl=xh) o
Two spheres Superposition (4.10.13) .‘2:[5"(“7‘ ‘):a tanh?(J¥,)exp( — xh) \0 X 1 ; ;
\ 2¢ ) 2



Constant charge vs. constant potential

For large distances (several Debye lengths) between the interacting particles,
there's no difference.

For small distances, the first particle affects the electrostatic potential at the
surface of the second, causing change of the adsorption of all ionic species
there.

Constant charge means that the adsorbed charge does not change. This
corresponds to the highest possible interaction (highest repulsion, in case of
two equivalent surfaces).

In reality, when two positively charged particles are close to each other,

the repulsion leads to the positive ions being desorbed (or similarly, negative
ions being adsorbed). This leads to smaller interaction.

The largest decrease one can get is the one between metal particles of fixed
potential (two grounded spheres). Theory says you cannot get a larger
drop of the surface charge then this fixed surface potential case.

The reality is always between these two limiting cases.



Surface charge density using Debye-Huckel

A similar analysis around a sphere gives
1+ xu
ps ZgK!//O( )
K

Between parallel plates having a surface potential (W) and separated
by a distance (L), the surface charge density is given by

1-e™
ps = 8/("//0 e_KL

If L = oo this reduces to the flat plate limit:
Ps = EY K

_pl+e™
Vo ex\1-e™
As L = 0 this equation becomes singular, meaning that a very large
potential must arise from a finite p. for small gaps between plates.

Solving for W,:




Geometry of bodies with
surfaces D apart (D«R)

Electric ‘Double-layer’ Interaction

Energy, W Force, F=—-dW/dD
Two ions or small TWO IONS IN WATER
charged molecules )
” s +z1zze2 &0) +2,2,€ (1+xn) J—
e *® solz:enl 411:808!' (14x0) 41t£0£r2 (1+K‘0’)
r3o

Two flat surfaces
(per unit area)

TWO FLAT SURFACES

a Arcasno?
—
o

a

r®»o

Wiy =(x/ 2m)Ze™*P

«?/ 2n)Ze P

Two spheres or

TWO SPHERES

RiR,

macromolecules of A R.R K| ——— | ze™P
radii R; and R, _¥_ 4 1732 76D R+ R,
o Ri+R, or
AuRa D Also F=2n (ﬁ) Wit
Sphere or macro- SPHERC ONFLAT
molecule of radius R @’ kRZe <P
near a flat surface J {0 RZe"D
Also F = 2tRWf
A®»0D
Two parallel AL
cylinders or rods of F 112 112
= ) 12 RiR, 132 RiR,
radii R, and R, (per o~ . Ze XD Ze<D
. ?
unit length) Z f on R,+R, ’21: R,+R,
Ay, A 0

Cylinder of radius R
near a flat surface
(per unit length)

CYLINDER ON FLAT

— R

@

|
o

R>D

312 i Ze<D
2n

Two cylinders or
filaments of radii R,
and R, crossed at 90°

CROSSED CYLINDERS

C\” ‘@n
Ay R 0

JRR,Ze™®

x+[RR, Z&™P

Also F=2m ./ RiR, Weiy

Interaction constant

2

Z=64reg, ¢ L y’
e
d at25°C
= 9.22x10™"" tanh?| 22 | [Jm™]
103

where

y = tanh(z e y /4 kT)

also

x=3.2881 [nm™']

FIGURE 14.10 Electrostatic double-layer interaction energies W(D) and forces (F = —dW/dD) between similar

constant potential surfaces of different geometries in terms of the interaction constant Z defined by Eq. (14.52). For
amonovalent 1:1 electrolyte such as NaCl (z = 1), Z = 64meqe(kT/e)? tanh?(ey/o/4kT) = (9.22 x 10~ "" tanh?(¥/x/103) J m~'at
25°Cand (9.38 x 10~ "") tanh?(¢/107) ) m~" at 37°C (body temperature). The Debye length, k', is defined by Eq. (14.36).
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e Electrostatic interactions in dielectric media like organic fluids can be
much different from that in agueous fluids. There are several reasons
for this:

e (1) Obtaining any charges in dielectric media is hard to do. An
important parameter arises from comparing the electrostatic energy
(V..) of two ions in solution (Coulomb’s law, V.. = (z,e)(z,e)/(4mer), for
a separation (r) between the ions) with the thermal energy (kT) which
tends to randomize ion positions throughout the solution.

e If we equate these energies, we find for a symmetric Z:Z electrolyte a
distance (/1;), known as the Bjerrum length, given by

Z%e?
5" 4nekT
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e |n water at room temperature, A; =0.70 nm. Thus, if | have NaCl
dissociated into Na* and Cl-, the ions have to be really close —in fact
closer than water solvation allows — in order for them to form NacCl
again (that’s why NaCl dissolves easily in water).

e |n contrast, in hexane with a relative permittivity of 2.0, A; =28 nm.
Thus, the ions can be spaced far apart and still attract each other
back into NaCl.

e Interestingly, if we assume that we have one ion pair in a volume
1/15°, then we can estimate a saturation concentration, which scales
as 1/25. In water we find a saturation concentration for Z =1 of 4.8 M.
The actual saturation concentration of NaCl is 5.4 M, and for KCl it is
4.2 M. When A; = 28 nm, the saturation concentration forZ=1 s
0.075 mM, and actual concentrations in dielectric media are usually
much lower.



Colloids and Surfaces A: Physicochemical and Engineering Aspects, 71 (1993) 1-37

https://www.sciencedirect.com/science/article Flsevir Scence Publishers BV, Amterdam
/pii/092777579380026B Review

Electrical charges in nonaqueous media

Dielectric media (organic fluids) .o v

Xerox Corporation, Webster, NY 14580, USA

(Received 2 September 1992; accepted 2 December 1992)

e (2) The Debye length in the fluid can be micrometers, which is
frequently larger than the particles of interest. Thus, colloidal
particles can look like point charges electrostatically.

e (3) The time required for electrostatic operations can be much
longer than usual. The free charge relaxation time (t;,) is given by

_ & > permittivity

t '
oL conductivity

e In 10 mM aqueous KCl near room temperature, the permittivity
£~80g, =7.1x10""° C*/N-m’
while the electrical conductivity is o = 1400 uS/cm , giving t;.. = 5 ns.

e Inorganic media, &=2g,=0.177x10""" C*/N-m* but o ~1pS/cm or
often much less giving t;.,, ~ 1 s or much more.

e Thus, dielectric media respond to electric fields slowly.



HaCWj/\OMO
0=S=00

Dielectric media (organic fluids) -

CHs OH
(0] RO
\/K/\/CH3 ORO
dioctyl sodium sulfosuccinate i« Span 85
(0]

H
3C (I)Na

= *J\cH2<CH2>SCH2/JCH2(CH2>GCH3

(4) Most fixed charges on particles in agueous suspensions are firmly
bound; in organic media, the charges can detach more readily from
the particle surface, meaning that the “fixed charge” is not always
stable.

In fact, to stabilize particles, one usually must add particular
surfactants that produce charge in dielectric media. Perhaps the best
known of these is Aerosol OT (AOT, with a technical name dioctyl
sodium sulfosuccinate, giving a conductivity ~20 nS/cm), although
there are others such as OLOA by Chevron or the nonionic Span 85
from Sigma Aldrich that can give conductivities more than 10 times
higher. These surfactants can provide enough charge to stabilize
many suspensions of particles in dielectric media. Note that all of
these conductivities are still low.
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