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Based on Midterm Teaching Eval

• Thank you for completing the eval and the positive feedback – it is very 
encouraging for the teaching team and we are motivated to do better.

• Thank you also for the suggestions on how to make this class better, we 
are working hard to adapt the second part of the semester to make this 
a better experience for you.

• Syllabus change
• New grading scheme

ACTIVITY Weight
Attendance and Participation* 20% + 10% = 30%
In-class Presentations 30%
NSF Fellowship Proposal 15% + 5% = 20%
Invention Disclosure (group) 15%
Final Project (group) 20%

• Paper 1 presentation grade will be released later this week. 
• More VR, more particle related VR, more complex examples: we will 

have one more VR lab towards the end of the semester. We are actively 
developing materials right now.



Based on Midterm Teaching Eval
• Time management: move the student presentation to the front of the class. 

Please help me keep things on track: Youtube presentation: 10 mins total 
(including the 5 minutes video); Journal club presentation: 5 mins presentation 
+ 5 minutes Q&A.

• Journal clubs: 
• “choose your own paper to read” --- we will do that for the final project, I also want to 

make sure you are exposed to the classics. As the semester moves along, we will transition 
into modern work.

• “All of the papers are required to be read each week” --- we thought that would be too 
much work, you are always welcome to read them though and keep up that curiosity.

• Less lecturing, more group activities and at least a break: duly noted, we do 
want you to be exposed to some classic math and physics in condensed matter 
physics but I will try to put in more balance.

• Youtube presentations: many of you love them, some of you not as much. The 
purpose of this is to connect us better to practical things that you care about. 
We want to focus on technology to compliment the more theoretical stuff I talk 
about in lectures.

• Guest lectures: many of you want more and some of you want less, perhaps due 
to different lecture style. Today we will have an excellent speaker in MechE that 
I know you will enjoy.



Guest Lecture for today (MechE
department seminar)



Final project logistics

• This project is required for the graduate students in the course only.

• Working in self-selected pairs, your team will introduce a new frontier of 
research related to complex particles and present a selection of two or more 
papers to teach the class about this topic. This presentation will take the place 
of a final exam for the course.

• Presentations will be 15 minutes long with an additional 5 minutes for Q&A.

• Although the lower limit for the number of papers your team chooses to discuss 
is 2, there is no upper limit provided that all papers are discussed to a 
reasonable degree of depth and your presentation remains within the time 
limit.

Assignment Submission Type Date Time

Topic Approval Text Submission on Canvas Friday, April 5 11:59 PM

Presentation Slides PDF/PPTX on Canvas Tuesday, April 23 1:30 PM

Final Presentation Oral Presentation Tuesday, April 23 In Class



Charge nonuniformity 

• The basic picture of a randomly 
“patchy particle” surface is

https://pubs.acs.org/doi/abs/10.1021/la063546t
https://pubs.acs.org/doi/abs/10.1021/la010634z

• When the patch size for the charge 
nonuniformity is very small, 
indeed going all the way to the 
level of the placement of 
individual ions, then the “discrete 
charge effect” is very small. 

• However, if the patch size (L) 
becomes larger, say with a 10-50 
nm length scale, the electrostatic 
forces can be significantly altered. 



Charge nonuniformity 

• The basic picture of a randomly 
“patchy particle” surface is

https://pubs.acs.org/doi/abs/10.1021/la063546t
https://pubs.acs.org/doi/abs/10.1021/la010634z

• electrophoresis measures the average zeta 
potential over the particles surfaces:

• rotational electrophoresis measures the 
zeta potential standard deviation:

• there is a significant variation of 
electrostatic forces, depending 
on the relative orientation of 
the two spheres:

orientation average repulsive 
electrostatic energy between particles 

Standard deviation of repulsion



Charge nonuniformity 

• The basic picture of a randomly 
“patchy particle” surface is

https://pubs.acs.org/doi/abs/10.1021/la063546t
https://pubs.acs.org/doi/abs/10.1021/la010634z

• Such variations in electrostatic repulsion can 
cause an unstable suspension – with the net 
interparticle energy being attractive at even 
larger separations – when measurements of 
the average zeta potential would have 
predicted a stable suspension. 

• there is a significant variation of 
electrostatic forces, depending 
on the relative orientation of 
the two spheres:

orientation average repulsive 
electrostatic energy between particles 

Standard deviation of repulsion



• Electrical double layer

• Poisson-Boltzmann equation
• Poisson equation, relate potential change to charge density
• Boltzmann equation, relate ion distribution to potential energy
• Poisson-Boltzmann: self-consistent description of electrostatic potential inside EDL, given bulk ion concentration (C∞), introduce Debye length (𝛋)

• Debye-Huckel
• For small surface potential and binary electrolyte, PB simplifies to Debye-Huckel, which give exponential decay of electrostatic potential (Ψ(x)) 

from surface potential (Ψ0) inside EDL with characteristic length (𝛋-1)
• Debye-Huckel (Ψ(x)) solutions for 1 plate, 1 sphere, between 2 plates

• Surface charge density (ρs) for 1 plate
• Electroneutrality gives relation between (ρs) and (Ψ0)
• Differentiate Boltzmann and use PB equation to relate total ion concentration at surface of 1 pate (C0) to (C∞) and (ρs)
• Grahame equation, relate (ρs) to (Ψ0) and (C∞) 

• In binary electrolyte, example of Grahame used to calculate (C0) from (Ψ0) and (C∞) with fixed (ρs)
• For low (Ψ0) and binary electrolyte, Grahame simplifies to (ρs) = ε𝛋(Ψ0) 

• Differentiate Boltzmann and use PB equation also relates individual ion concentration (Ci(x)) to electrostatic potential (Ψ(x))
• For binary electrolyte, this simplifies to Gouy-Chapman’s solution to (Ψ(x)), allow us to plot EDL: (Ci(x)), (Ci0(x)), (Ψ(x)), (Ψ0), given (ρs) and (C∞)
• For low (Ψ0) and binary electrolyte, Gouy-Chapman simplifies to Debye-Huckel, completing the full circle

• Surface charge density (ρs) using Debye-Huckel (low (Ψ0) and binary electrolyte assumed) 
• Direct plugging Debye-Huckel into electroneutrality for 1 plate will also give simplified Grahame: (ρs) = ε𝛋(Ψ0)
• Surface charge density (ρs) using Debye-Huckel for 1 sphere, for 2 plates: for finite (ρs), (Ψ0) → ∞ as gap → 0

• Electrostatic force per area (fes) between 2 plates
• Origin (contact value theorem): increased ionic concentration in gap → increased osmotic pressure (𝜋) exerted on plates
• Navier-Stokes equation for static fluid reduces to balance of pressure and electrical forces on the fluid
• Navier-Stokes + Poisson equations relates (𝜋) to electric field (dΨ(x)/dx)
• Navier-Stokes + Poisson + Boltzmann equations solve (𝜋) as a function of (Ψ(x)) and (C∞)
• For low (Ψ0) and binary electrolyte, solution simplifies to (𝜋) ∼ ε𝛋(Ψ(x))2
• Plug in Debye-Huckel for 2 plates for (Ψ(x)) to obtain exponential decay of electrostatic force per area (fes) with characteristic length (𝛋-1)
• Integrate (fes) for electrostatic energy per unit area (Ves) between 2 plates 

• Electrostatic energy (Φes) between 2 spheres and the Derjaguin approximation
• Apply the Derjaguin approximation to obtain the electrostatic energy (Φes) between 2 spheres
• Differentiate to calculate the electrostatic force (Fes) between 2 spheres
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• Electrical double layer
• Poisson-Boltzmann equation

• Poisson equation, relate potential change to charge density
• Boltzmann equation, relate ion distribution to potential energy
• Poisson-Boltzmann: self-consistent description of electrostatic 

potential inside EDL, given bulk ion concentration (C∞), introduce 
Debye length (𝛋)

• Debye-Huckel
• For small surface potential and binary electrolyte, PB simplifies to 

Debye-Huckel, which give exponential decay of electrostatic 
potential (Ψ(x)) from surface potential (Ψ0) inside EDL with 
characteristic length (𝛋-1)

• Debye-Huckel (Ψ(x)) solutions for 1 plate, 1 sphere, between 2 
plates

• Surface charge density (ρs) for 1 plate
• Electroneutrality gives relation between (ρs) and (Ψ0)
• Differentiate Boltzmann and use PB equation to relate total ion 

concentration at surface of 1 pate (C0) to (C∞) and (ρs)
• Grahame equation, relate (ρs) to (Ψ0) and (C∞) 

• In binary electrolyte, example of Grahame used to calculate (C0) from (Ψ0) 
and (C∞) with fixed (ρs)

• For low (Ψ0) and binary electrolyte, Grahame simplifies to (ρs) = ε𝛋(Ψ0) 



Electrostatic forces

• The electrical potential decays away from a flat surface at a rate 
given roughly by the Debye-Huckel equation: 

• Typical magnitudes of the surface potential (Ψ) are 10 to 150 mV, 
and can be negative or positive. Since these potentials arise due 
to the surface charges, the relationship between the surface 
charge density (units C/m2) and the surface potential is: 

Surface potential Distance from the surface

Electrical permittivity

From Lecture 4:



Surface charge density
• Note the potential becomes proportional to the surface charge 

density. 
• The expression                        is equivalent to a capacitor whose two 

plates are separated by a distance 𝛋-1, have charge densities ±ρs, 
and potential difference Ψ0.

• This analogy with a charged capacitor gave rise to the name diffuse 
electric double-layer for describing the ionic atmosphere near a 
charged surface, whose characteristic length or “thickness” is known 
as the Debye length 𝛋-1.
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Surface charge density
• If we consider the change of potential Ψx = Ψ(x) and ionic 

concentrations Cx = C(x) away from the charge surface, we can use 
the previous result
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Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that

• Turning attention to the ionic concentration, differentiating the 
Boltzmann distribution yields: 

• Integrate: 
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Surface charge density
• If we consider the change of potential Ψx = Ψ(x) and ionic 

concentrations Cx = C(x) away from the charge surface, we can use 
the previous result

• Instead of integrating from x → ∞ to 0 as we did previously, we can 
integrate to any x:

• For a 1:1 electrolyte (like NaCl), this reduces to:
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Surface charge density
• This can be integrated to yield

• This is known as the Gouy-Chapman theory.
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where and with Z = 1





Surface charge density
• This can be integrated to yield

• This is known as the Gouy-Chapman theory.
• For high surface potentials 𝛾 → 1, whereas for Ψ0 < 25 mV, Gouy-

Chapman reduces to the Debye-Huckel result derived previously:

where and with Z = 1



Debye-Huckel results for electric potential 

• general solution: 
• Debye-Huckel equation for electric potential near to a single flat 

plate (upon applying the boundary conditions):

• At the plate surface the electric potential is Ψ0, while just a few 
Debye lengths away, the electric potential decays to nearly zero. 

• Example: 



Surface charge density
• This can be integrated to yield

• This is known as the Gouy-Chapman theory.
• For high surface potentials 𝛾 → 1, whereas for Ψ0 < 25 mV, Gouy-

Chapman reduces to the Debye-Huckel result derived previously:

where and with Z = 1



Surface charge density
• Oftentimes we want to predict the surface charge density (ρs [=] 

C/m2), knowing the surface potential, or vice versa.
• a surface plus its EDL form an electroneutral system. Thus, the 

charges at the surface and the charges in the bulk fluid balance. This 
can be written mathematically for a flat plate as

• This equation says that the surface charges must be balanced by the 
charges in the fluid from near the plate to infinity. A rearrangement 
of the Poisson equation tells us 

integrate



Surface charge density using Debye-Huckel 
• Oftentimes we want to predict the surface charge density (ρs [=] 

C/m2), knowing the surface potential, or vice versa.
• a surface plus its EDL form an electroneutral system. Thus, the 

charges at the surface and the charges in the bulk fluid balance. This 
can be written mathematically for a flat plate as

• This equation says that the surface charges must be balanced by the 
charges in the fluid from near the plate to infinity. A rearrangement 
of the Poisson equation tells us 

• For small potentials near a plate, we have Debye-Huckel 

integrate

Plug in ρs

also yield 



Surface charge density using Debye-Huckel 
• Example



Surface charge density using Debye-Huckel 
• A similar analysis around a sphere gives

• Between parallel plates having a surface potential (Ψ0) and separated  
by a distance (L), the surface charge density is given by

• If L → ∞ this reduces to the flat plate limit:

• Solving for Ψ0:

• As L → 0 this equation becomes singular, meaning that a very large 
potential must arise from a finite ρs for small gaps between plates. 



Electrostatic force between plates 

• Once the electrostatic potential between two plates is known, we can 
evaluate the force or potential energy between the two plates. 

• We will start with two plates, each with a surface potential (Ψ0) and 
separated by a distance (h). The coordinate x runs perpendicular to 
the plates, with x = 0 halfway between the plates. 



Electrostatic force between plates 

• Outside the plates the bulk pressure is p∞, while between the plates 
the pressure is higher due to the electrostatic force on the fluid – 
charged, since it is in the EDL – and also due to a higher osmotic 
pressure between the plates since there are more ions in the EDL 
than in the bulk fluid. 



Electrostatic force between plates 

• If the plates have the same surface potential, they will repel with an 
equal but opposite force. Let’s imagine that we hold the plates in 
place by applying a force (F1) onto plate 1 and a force (F2 = -F1) on 
plate 2. In this case the fluid between the plates will remain static, 
meaning that it will not accelerate, nor will it flow and dissipate 
energy. Our job at this point is to evaluate F1 = -F2. 



Electrostatic force between plates 

• evaluate the electrostatic force per area (fes). For plates with an area 
(A), we have 

• The Navier-Stokes equation is 

• Charges move due to a finite electric field, whether the charges are 
electrons or ions. As the local electric field becomes stronger – 
meaning that the voltage change with distance becomes steeper – 
the ions in that region move faster. 

Fluid velocityFluid density Fluid viscosity

isotropic pressure in the fluid 

Electrical charge density

Local electric field



Electrostatic force between plates 

• evaluate the electrostatic force per area (fes). For plates with an area 
(A), we have 

• The Navier-Stokes equation is 

• the x-direction Navier-Stokes equation with v = 0 is 

• This gives the balance of pressure and electrical forces on the fluid. 
Where the fluid is static, these two forces balance at every position. 

Fluid velocityFluid density Fluid viscosity

isotropic pressure in the fluid 

Electrical charge density

Local electric field



• evaluate the electrostatic force per area (fes). For plates with an area 
(A), we have 

• The Navier-Stokes equation is 

• the x-direction Navier-Stokes equation with v = 0 is 

• This gives the balance of pressure and electrical forces on the fluid. 
Where the fluid is static, these two forces balance at every position. 

Electrostatic force between plates 

• re-arranged version of the Poisson equation 



The Poisson equation 

• define an “electrical potential” (Ψ, in V or mV), which is the voltage at 
any position in the system. 

• the electric field (E)  is defined as 
• The voltage arises due to charge groups on the particle, and changes 

through the EDL. For static systems the electric potential can be very 
accurately-described by a single scalar equation called “the Poisson 
equation”:

• This partial differential equation predicts the electrical potential (Ψ, 
in V or mV) at any position (x,y,z), when the volumetric charge 
density (ρe, in C/m3) is known everywhere. 



• evaluate the electrostatic force per area (fes). For plates with an area 
(A), we have 

• The Navier-Stokes equation is 

• the x-direction Navier-Stokes equation with v = 0 is 

• This gives the balance of pressure and electrical forces on the fluid. 
Where the fluid is static, these two forces balance at every position. 

Electrostatic force between plates 

• re-arranged version of the Poisson equation

• make a substitution for the volumetric charge density to give 



Electrostatic force between plates 

• re-arranged version of the Poisson equation

• make a substitution for the volumetric charge density to give 

• Recall from the chain rule

integrate



Electrostatic force between plates 

• The easiest place to evaluate B is at the midplane, where by 
symmetry we know that dΨ / dx = 0. Therefore B is the pressure at x 
= 0. 

• What contributes to this pressure? If the plates were uncharged, the 
pressure at the midplane would be simply the ambient pressure (p∞).

• As charges are added to the plate, bringing additional ions into the 
electrical double layer region between the plates, there is also an 
osmotic pressure contribution. 



Electrostatic force between plates 
• Because the ions are “trapped” in the EDL – there is an analogy to 

being trapped behind a semi-permeable membrane – the osmotic 
pressure at the midplane is higher in the EDL by an amount 𝜋(x = 0).

• This simply says that the pressure inside the EDL between the plates 
is different from the pressure outside the plates by the difference in 
osmotic pressure. 

• The 𝜋∞ appears since the bulk solution will also have some finite 
ionic strength, even though it isn’t as high as that between the plates. 

• Since the fluid at x = 0 has a slightly higher pressure, it will push 
outward on the neighboring fluid, which in turn will push on the fluid 
all the way to the wall. The electrical forces on the fluid at x = 0 are 
zero, since by symmetry dΨ / dx = 0 there, and thus E = 0. 

• In the end the pressure force is the only force remaining: 



Journal club assignments for L9


