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Colloidal Systems, Darrell Velegol



Announcements

 Syllabus change

* Invention disclosure assighnment (15%) — removed
* New grading scheme

ACTIVITY Weight

Attendance and Participation® 20% + 10% = 30%
In-class Presentations 30%

NSF Fellowship Proposal 15% + 5% = 20%

| o Disel { | 1cos

Final Project (group) 20%

* Mid-term + final course reviews for the course (5%)
bonus to final grade — please make sure to do it to not
miss out — due Wednesday March 6 (tomorrow).



Announcements

* As a reminder, things that go into your participation
grade (now 30%):
e Attendance
* Polls
* Perusall
* Peer presentation evaluations
* Asking questions following presentations



Rigid Nonspherical Particles: The Nematic Phase

* For molecules that are not spherical, packing and ordering transitions
can occur that are more complex than those for spherical molecules.

* the simplest nonspherical shape is a stiff, long cylinder

https://en.wikipedia.org/wiki/Tobacco

Mmosaic Vvirus

Transmission electron micrograph of TMV particles negative stained to enhance
visibility at 160,000x magnification


https://en.wikipedia.org/wiki/Tobacco_mosaic_virus
https://en.wikipedia.org/wiki/Tobacco_mosaic_virus

Rod-Like Objects

tobacco mosaic virus

L=300 nm long, d=18 nm wide

Diffusivity:

kg

p= T (%) 403
37T,uBL(nd 3)

https://www.google.com/search?q=tobacco+mosaic+virus+electron+micrograph&tbm=isch&source=iu&ictx=1&fir=VCHszPqFz02MJM%
253A%252Cys5UEQPYy30xCoM%252C_&usg=__ 4QIVfGScIPhDHu33e-dV01X-
65A%3D&sa=X&ved=0ahUKEw;ji5ZGC3KjYAhWr64MKHSdhCScQ9QEINjAE#imgrc=VCHszPqFz02MJM:



You need to log in using your umich.edu account in order to access this poll

Lecture 5 Poll: Cylinder Packing

Consider only excluded volume effects, how should we expect

the closest packing of cylindrical rods be compared to the HCP
limit (~0.74) of hard spheres?

* A. higher
e B. the same
e C. lower

Long URL https://forms.gle/y4xy3HsbFV6npW956
Short URL https://shorturl.at/gkGR7



https://forms.gle/y4xy3HsbFV6npW956
https://shorturl.at/gkGR7

Consider only excluded volume effects, how should we expect the closest packing of
cylindrical rods be compared to the HCP limit (~0.74) of hard spheres?

14 responses

@ Higher
@® The Same
@ Lower




In the two-dimensional Euclidean plane, Joseph Louis Lagrange
proved in 1773 that the highest-density lattice packing of circles
is the hexagonal packing arrangement,['l in which the centres of
the circles are arranged in a hexagonal lattice (staggered rows,
like a honeycomb), and each circle is surrounded by six other
circles. For circles of diameter D and hexagons of side length D,
the hexagon area and the circle area are, respectively:

Ao — 3v/3 D? Identical circles in a 5
H= 79" hexagonal packing
T arrangement, the densest
Ac = ZD2 packing possible

The area covered within each hexagon by circles is:

Apc = 3A¢ = ?%m

Finally, the packing density is:

3T "2
fi= Agc TP
2
- arrangement of equal circles with
= — 2~ 0.9069 transitions to an irregular arrangement
2v/3 of unequal circles

https://en.wikipedia.org/wiki/Circle_packing#:~:text=In%20the%20two0%2Ddime
nsional%20Euclidean,is%20surrounded%20by%20six%200other



Packing of Cylinders

* The closest packing of cylindrical rods occurs when they are parallel to
each other and packed hexagonally in the plane orthogonal to their
axes; in this case, ¢ = 0.90609.

 If the density of long ordered rods is decreased, a melting transition will
occur in which the in-plane hexagonal order is lost, but the
orientational order of the rod axes is partially preserved.

* This partially ordered state is called a nematic. States with partial order,
including the nematic state, are common for stiff molecules of high
aspect ratio.



ng of Cylinders

Pack

- = eyinderleng hexagonal packing (2D)
Omax = 0.9069
end-on view of
packed v = no. rods/vol.
cylinders b= (T[)dzL
M4

vol. of cylinder

ifd K Py 1.€., v < 1/d*L -> hexagonal packing disappears

but for long rods, orientational order can persist
(d)

D

(a) (b) (¢)

concentration regimes:

from Doi and
Edwards, Oxford,
1986 Dilute Semi-Dilute Concentrated Nematic
4 i 4 Isotropic ~o(_i_>
y<— —_— <L Y <L — v o]

L3 L3 dLe



Phase behaviour for non-attracting axisymmetric hard particles

“spheroids” — when two axes are same length

hard prolate ellipsoids
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aspect ratio

Frenkel and Mulder, Molecular Physics, 1985

http://homepage.univie.ac.at/franz.vesely/




Packing of Cylinders

e The degree of orientational order in a nematic is described by an
orientational order parameter S. S quantifies the degree to which
molecular orientations are parallel to a common nematic axis. S=1
corresponds to a perfectly parallel orientation of all rod-like
molecules or particles, while S = 0 corresponds to a completely
random, or isotropic, distribution of molecular orientations:

3 1

< cos?0 > ——

S ==
2 2



Nematic Order

M '> v
\ L

y Ava

define nematic order parameter (scalar): =~ +7/7"

S =§< cos2 6 > _l 0<S <1 Note: S here is not entropy
-2 2 or structure factor

<>= [-p@ du? = " [T (8, ¢)sin 6d6de
u is a unit vector, u = (sinfcos¢, sinfsing, coso)

Y(w)du? = probability that a rod’s orientation lies
between u and u +d u



https://en.wikipedia.org/wiki/Spherical_coordinate system
‘.x (rl 91 (p)

Reminder: Spherical coordinate system
y

Conversely, the Cartesian coordinates may be retrieved from the spherical coordinates
(radius r, inclination 6, azimuth @), where r € [0, ©), 6 € [0, ], ¢ € [0, 27), by

x = rsinf cos g,

y = rsin@ sin @,
z = 1rcosé.

<>= [-p@ du? = " [T (8, ¢)sin 6d6de
u is a unit vector, u = (sinfcos¢, sinfsing, coso)

Y(w)du? = probability that a rod’s orientation lies
between u and u +d u



Definite integral

%]

X ]
] 2 cos>(x) sin(x) dx = 5 ~0.33333
-~ O

.|‘|.|‘ |
NI

Visual representation of the integral

0<S <1 Note: S here is not entropy

¢ = 3 2 g 1
- E < cos > _E or structure factor

<>= [-p@ du? = " [T (8, ¢)sin 6d6de

u is a unit vector, u = (sinfcos¢, sinfsing, coso)

Y(w)du? = probability that a rod’s orientation lies
between u and u +d u



Onsager theory of nematic transition

Volume z excluded to center of a second rod (shaded area):
d = rod diameter; L = rod length
ziwu') = fu,u") = 2dL?|(u x u')| = 2dL?sin(u’,u)

(induces rods to become more nearly parallel)

sin(u’,uf
Average volume excluded to a rod of orientation u

Z(u) = [P B(w,u) du’?

change of entropy per unit volume:

(due to excluded volume) each (of 2)
shaded areas =

2 [2sin(u’,u)

s i

(5/75 W //ij]
(

;
7

eSS
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Excluded Volume Effects

z = excluded volume parameter
consider dilute particles
5 vol. z - add a particle

® probability that a particular particle
overlaps another: vz = ¢, volume fraction
O for N particles, number of configurations:

[V(1—wvz/2)]NY factor of 2
vol. V () = NTASN avoids double
N =vV counting

S = kglnQ = —kgNin[v(1 —vz/2)] (ignore const.)

~ — kg V[vinv + vin (1 — E)]

2
change of entropy per unit volume: ;1. (1 _ %)] ~ —lszvz
B 2 2
(due to excluded volume) - :
or small v




Onsager theory of nematic transition

Volume z excluded to center of a second rod (shaded area):
d = rod diameter; L = rod length
ziwu') = fu,u") = 2dL?|(u x u')| = 2dL?sin(u’,u)

(induces rods to become more nearly parallel)

sin(u’,uf
Average volume excluded to a rod of orientation u

Z(u) = [P B(w,u) du’?

change of entropy per unit volume:

(due to excluded volume) each (of 2)
1 ) 1 ) shaded areas =
AS = _EkBZV -> —Esz(u)v %Lzsin(u’,u) |
spheres cylinders (5//3/3)% )|
V= #r O dS/ VOI . 2d I [o%:}f/}?,;‘;%/jz;‘,g::i;;;:fz:,c/;{55'«;/])

Entropy S and free energy A are per unit volume



Entropy S and free energy A are per unit volume

Orientational Entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

A1yl =TS = VkBTjw(u)ln[w(u)] du? (penalizes orientation)

(equivalent to: S = —kgN ),; P; In(P;)) like in Shannon entropy
v = #rods/vol. = N/V



Recall Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed

A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=

N
A/kgT /ks n Nin(w)const number density

V
A/(VkgT) = vin(v) # const

Pressure P = vkgT




Recall Non-Interacting Particles
(Generalization 3: non-uniform probability
distribution)

A/kgT =|-S/kg = Z:N In(P;) N; =number of particles in state |
P; =probability (or fraction of times)

Nz P, In(P) that particle is in state i = N;/N
o l l
2 e : = total number of particles
(equal a priori probability of each state)
z P In(P,) = Shannon entropy (per
particle) from information
05 Prre 1) theory E, S
: Claude Sh | SHC N
high Shannon entropy means low Univ. of Mich. arad, T E pu -
information content, and vice versa born in Petoskey, M
123 ol
“Information content of the known universe:” 101°



Entropy S and free energy A are per unit volume

Orientational Entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

A{[Y] = =TS = vkgT j Y()In[yY(u)] du? (penalizes orientation)
(equivalent to: S = —kgN ),; P; In(P;)) like in Shannon entropy
(note that A,[y] is a functional of Y(u)) v = #rods/vol. = N/V

If excluded volume interactions are pair-wise additive:

(valid if concentration is not too high ~ 10% or so)
A, = %kBTz:v2 Z is average over both ¥(u)and y(u')

A, Y] = %VZRBT[ffl,b(u)l/J(u') L(u’,u)du?du’?] (favors orientation)
Z




Excluded Volume Effects

z = excluded volume parameter
consider dilute particles
5 vol. z - add a particle

® probability that a particular particle
overlaps another: vz = ¢, volume fraction
O for N particles, number of configurations:

[V(1—wvz/2)]NY factor of 2
vol. V () = NTASN avoids double
N =vV counting

S = kglnQ = —kgNin[v(1 —vz/2)] (ignore const.)

~ — kg V[vinv + vin (1 — E)]

2
change of entropy per unit volume: ;1. (1 _ %)] ~ —lszvz
B 2 2
(due to excluded volume) - :
or small v




Entropy S and free energy A are per unit volume

Orientational Entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

A1yl =TS = kale/)(u)ln[l/)(u)] du? (penalizes orientation)

(equivalent to: S = —kgN ),; P; In(P;)) like in Shannon entropy
(note that A,[y] is a functional of Y(u)) v = #rods/vol. = N/V

If excluded volume interactions are pair-wise additive:

(valid if concentration is not too high ~ 10% or so)
A, = %kBTzzv2 Z is average over both ¥(u)and y(u')

A, Y] = %VZRBT[ffl/J(u)l/J(u') L(u’,u)du?du’?] (favors orientation)
Z

To find the distribution function ¥ (u) that minimizes the sum of

these two free energy contributions, we must do calculus of

variations using a Lagrange multiplier to maintain [ y(u) du® =1




Onsager Nematic Potential 1/,,,,, (1)

The distribution of orientations can, in principle, be computed
theoretically from a nematic potential that expresses the influence of
one rod's orientation on that of its neighbors.

Onsager’s theory was derived for an ideal solution of long, perfectly
stiff, hard rods interacting only by excluded-volume forces, at
concentrations dilute enough that only pairwise interactions are
significant.

From the potential 1/,,,,, (1), one can obtain the rod orientation
distribution function Y (u), and hence the order parameter S, by a
self-consistent calculation.



Nematic Order i

M {) | |l J
"-,' / ‘l .“

define nematic order parameter (scalar): =+
3 2 1 Note: S here is not entropy
S ==<cos*0>—=| 0<S<1 '
2 2 or structure factor

<>= [-p@ du?= [ [T (6, ¢)sin 6d6de

u is a unit vector, u = (sinfcos¢, sinfsing, coso)

Y(w)du? = probability that a rod’s orientation lies
between u and u +d u



Entropy S and free energy A are per unit volume

Solution: Onsager Potential

Y (u) = const exp[—Vpem (w) / kgT] | (Boltzmann principle)

fl/)(u) du =1 (COTlSt) 1_— fe Vhem/kBT du
(normalization const.)

average volume excluded per rod
Viem (W) = kgTvz(w)|= kgTv [ y(u') p(U’,u) du'?
B(w’,u) = 2dL%sin(u’,u) v = # rods/vol
Viem (W) = 2vdL?kgT [ y(u')sin(u’,u) du'?

Solve for V,,..,, (u) and y(u) simultaneously

Note:  Az[y] = 3v2ksT[[ [ ) f(u’,u)du’du’?]

=2 [ Y@Vaem W du®l (i e, 4[] = —TAS = ~ kpTZv?)

<



Solution to Onsager Theory

Uu-n = cosb
To simplify the problem, Onsager suggested using

an approximate form for the solution: W
(u) = —— h /R
Y(u _4nsinh(a)cos (au-n) . =

6

where n is the director, a unit vector pointing in the
direction of mean orientation

(the prefactor was chosen so that [y (u) du® = 1)
Insert this into A, (u)+ A,(u) and minimize wrt o

e*+e ™ eX —e™X
cosh(x) = > sinh(x) = >




Entropy S and free energy A are per unit volume

Orientational Entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

Al ]

= —TS = vkgT

Y@)in[y(w)] du?

(penalizes orientation)

(equivalent to: S = —kgN ),; P; In(P;)) like in Shannon entropy
(note that A,[y] is a functional of Y(u)) v = #rods/vol. = N/V

If excluded volume interactions are pair-wise additive:

(valid if concentration is not too high ~ 10% or so)
A, = %kBTz:v2 Z is average over both ¥(u)and y(u')

A, Y] = %VZRBT[ffl,b(u)l/J(u') (u’,u)du?du’?] | (favors orientation)

Z

To find the distribution function ¥ (u) that minimizes the sum of
these two free energy contributions, we must do calculus of
variations using a Lagrange multiplier to maintain [ y(u) du?® =1



Order Parameter

3 1 3 1
S Ezjl/)(u) [(u-n)z—glduz =5 < cos* 0 > —3
using uniaxial symmetry: TR

S=n j W(0)[3cos?(8) — 1]sind do

<>= [ du? = [T [T 9 (0, ¢)sin 0dodg

Y(w)du? = probability that a rod’s orientation lies
between u and u +d u

n is a unit vector point in direction of average nematic orientation



Free Energy Solution

AuT] = visT f Y[ (u)] du?

A1) = v2pT[f [ Y@y f(W,u)du?du’?]

Y(u) = Lcosh (au-n)

47 sinh(a)
v increasing

RY

for small v, only one soln: S =0 (a = 0; isotropic)

for larger v (between v,* and v,*, S =0 (o = 0) and
S >0 (a > 0) are solutions

As v increases, the lowest free energy state switches from
S =0to S # 0 state.



Free Energy Solution

For low concentrations v, the only solution is the trivial one,
const. = 1/4 , corresponding to the isotropic state.

For a high enough value of v, there is in addition to the isotropic
solution a stable nontrivial solution corresponding to a nematic
state with S > 0.

As v increases, the lowest free-energy state changes from the
isotropic to the nematic.

Onsager's potential is purely entropic; hence for a given rod diameter
and length, the transition to the liquid crystalline state occurs at a
concentration that is independent of the temperature T.

And since the Onsager potential applies to a two-component system
(rods + solvent), there is a biphasic range of concentrations over
which the isotropic and nematic phases coexist.



Phase Separation

Add free energy from translational entropy
Ao(v) = vkgT(n(v) — 1) 4

(sum over both

A[l/)' V] — AO(V) + Al [l/), V] T A2[¢) V] phases)
Drive to reduce A, comes at the cost of increasing 4A;and A,

Minimize free energy with respect to compositional variation

‘\ o (@m,v) A o (@m,V)

from Doi and Edwards, The

Theory of Polymer Dynamics
min. at o, #0 double tarllgent construction

Ay (nematic phase)

disappears 4
2nd min. Y / c

appears v,

‘ 7 \TB 7
min.ata,=0=S #
ﬂ:\ (isotropic phase)

r\ sample overall concentration

Entropy can drive
_ both orientation
fremaic  and phase

vs Phase .
& separation
iso'tropic
b phjése

j—
2>

|}




Nematic Order

/.~ biphasic
ba ¢ ¢

to describe orientational interactions, we need a “nematic potential” V,,,,,, (u)




Minimized Onsager Free Energy

Note that there are two minima forv,* <v <wv,
This means that there is two-phase equilibrium

Isotropic phase becomes unstable atv =v'=v,

4.25 527 51
Va=rz VBT 412 [Ty
wd?L d d| . _md*L

= ~ 3.3— =4.1- =
O VA 33L ¢p 7 ¢ 14 4




Aspect Ratio
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these predictions of the Onsager
theory for the dependence of S on
v seem to be in qualitative
agreement with experimental
measurements for semirigid
molecules such as poly(y-benzyl-
1-glutamate) (PBLG). 0 el —y
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Residues per Molecule

shows the values of ¢, and ¢ , the volume fractions of molecules
corresponding to the boundaries of the biphasic region.
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for PBLG molecules, ¢, and ¢z decrease roughly as 1/L with increasing
molecular length, in agreement with the Onager theory, up to a length of around
600 A, corresponding to about 400 monomers.

For longer molecules, ¢, and ¢ are roughly independent of molecular length,
presumably because the longer molecules no longer behave as rigid rods

wd?L 33d _41d
7 ~337 P =g
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molecules such as poly(y-benzyl- * - 3
1-glutamate) (PBLG). 0 1 -

0 200 400 600 800 1000 1200
Residues per Molecule

shows the values of ¢, and ¢ , the volume fractions of molecules
corresponding to the boundaries of the biphasic region.

for PBLG molecules, ¢, and ¢z decrease roughly as 1/L with increasing
molecular length, in agreement with the Onager theory, up to a length of around
600 A, corresponding to about 400 monomers.

For longer molecules, ¢, and ¢ are roughly independent of molecular length,
presumably because the longer molecules no longer behave as rigid rods

The Onsager theory and its extensions are valid only when the concentration is
low enough that pairwise excluded-volume interactions are the dominant ones.
Thus, these theories are not likely to apply to solvent-free bulk, or thermotropic,
liquid crystalline phases, for which there are likely to be complex packing

interactions and anisotropic energetic interactions, such as those produced by
van der Waals forces.
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PBLG phase behavior
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Why doesn’t the volume
fraction of nematic keep
getting smaller?

the molecules are not
completely rigid!



Glotzer Tedx talk on entropy 2012

https://www.youtube.com/watch?v=chS8dpG
BOEO&ab channel=TEDxTalks



https://www.youtube.com/watch?v=chS8dpGB0E0&ab_channel=TEDxTalks
https://www.youtube.com/watch?v=chS8dpGB0E0&ab_channel=TEDxTalks

Glotzer Kavli talk on entropy 2019

https://www.youtube.com/watch?v=JW1L vZ6K1M



https://www.youtube.com/watch?v=JW1L_vZ6K1M

Electrostatic force

Reference text:
Colloidal Systems, Darrell Velegol
Colloidal Science and Nanoscale Engineering Slides, Orlin Velev
Intermolecular and surface forces, Jacob Israelachvili



Electrical double layer

Poisson-Boltzmann equation
* Poisson equation, relate potential change to charge density
* Boltzmann equation, relate ion distribution to potential energy
e Poisson-Boltzmann: self-consistent description of electrostatic potential inside EDL, given bulk ion concentration (C..), introduce Debye length (k)

Debye-Huckel

*  For small surface potential and binary electrolyte, PB simplifies to Debye-Huckel, which give exponential decay of electrostatic potential (W(x))
from surface potential (W) inside EDL with characteristic length (k%)

*  Debye-Huckel (W(x)) solutions for 1 plate, 1 sphere, between 2 plates

Surface charge density (p.) for 1 plate
* Electroneutrality gives relation between (p.) and (W)
» Differentiate Boltzmann and use PB equation to relate total ion concentration at surface of 1 pate (C,) to (C..) and (p.)
* Grahame equation, relate (p.) to (W,) and (C..)
* Inbinary electrolyte, example of Grahame used to calculate (Cp) from (W;) and (C..) with fixed (p.)
*  Forlow (W) and binary electrolyte, Grahame simplifies to (p.) = ek(W,)
» Differentiate Boltzmann and use PB equation also relates individual ion concentration (C(x)) to electrostatic potential (W(x))
*  For binary electrolyte, this simplifies to Gouy-Chapman’s solution to (W(x)), allow us to plot EDL: (C(x)), (Cio(x)), (W(x)), (W,), given (p.) and (C..)
*  Forlow (W,) and binary electrolyte, Gouy-Chapman simplifies to Debye-Huckel, completing the full circle

Surface charge density (ps) using Debye-Huckel (low (W) and binary electrolyte assumed)
* Direct plugging Debye-Huckel into electroneutrality for 1 plate will also give simplified Grahame: (p.) = ex(W,)
* Surface charge density (p.) using Debye-Huckel for 1 sphere, for 2 plates: for finite (p.), (W,) > e asgap > 0

Electrostatic force per area (fos) between 2 plates
*  Origin (contact value theorem): increased ionic concentration in gap = increased osmotic pressure (1) exerted on plates
* Navier-Stokes equation for static fluid reduces to balance of pressure and electrical forces on the fluid
* Navier-Stokes + Poisson equations relates () to electric field (dW(x)/dx)
e Navier-Stokes + Poisson + Boltzmann equations solve (1) as a function of (W(x)) and (C..)
*  Forlow (W,) and binary electrolyte, solution simplifies to (1) ~ ex(W(x))?
*  Plug in Debye-Huckel for 2 plates for ({(x)) to obtain exponential decay of electrostatic force per area (f,;) with characteristic length (k)
* Integrate (f.,) for electrostatic energy per unit area (V,,) between 2 plates

Electrostatic energy (®.s) between 2 spheres and the Derjaguin approximation
*  Apply the Derjaguin approximation to obtain the electrostatic energy (®..) between 2 spheres
» Differentiate to calculate the electrostatic force (F.;) between 2 spheres



Without electrolyte

Origin of the electrostatic forces:
Surface charge

Negatively
charged




With electrolyte

Debye length, K =7

Stern layer OHP
1 Counterions (cations) l

c

}% Counterions C,

[~

@

e

S C,=C.=Cs
x=0 X

FIGURE 14.7 Near a negatively charged surface there is an accumulation of counterions (ions of opposite charge to
the surface coions) and a depletion of coions, shown graphically below for a 1:1 electrolyte, where p.. is the electrolyte
concentration in the bulk or “reservoir” at x = «. Counterions can adsorb to the surface in the dehydrated, partially
hydrated, or fully hydrated state. The OHP is the plane beyond which the ions obey the Poisson-Boltzmann equation.
This plane is usually farther out than the van der Waals plane.



Electrical double layer (EDL)

What is “double” about the electrical double layer around a particle?
There are two charged layers: 1) a fixed layer of charges on the
particle surface, and 2) a fluid layer touching the particle surface,
which contains oppositely-charged “counter-ions”. Together, the net
sum of the charges on the particle plus the charges in the fluid layer
add to zero, meaning they are together electroneutral.

The primary quantities that we want to know about the EDL are the
electrical potential (W) on and around the particle, and sometimes
the spatial distribution of ions in the fluid layer.



Electrical double layer (EDL)

Origin of the surface charge
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Electrical double layer (EDL)

In aqueous solutions the particle surfaces almost always become
charged. If the charge group is a carboxyl (-COOH), then when the pH
of the fluid is greater than the pKa of the acid group — in this case,
roughly 4 — the proton will dissociate, leaving a negatively-charged
COO- group bonded to the surface.

For silica particles, the surface groups first become silanol groups (-
Si-OH) in water, and then the protons dissociates to give negatively-
charged Si-O- groups at the surface.

We often call this the “fixed charged layer”

Colloid scientists frequently also refer to a Stern layer, which is an
additional layer of species bound directly near the fixed layer of
charges.



Electrical double layer (EDL)

e The charges on the particle arise due to the solvating action of the
fluid on the particle. In turn the ions in the solvent re-distribute their
positions in solution so that they form a layer — often only

nanometers thick — that counter-balances the fixed charges on the
particles.

/f bulk (neutral)

fluid layer

— +

X
[ de T LT —— '+ /(fixed layer

Figure 2-1. Electrical double layer (EDL). The “fixed charge layer”
has charges bound on the surface, while the “fluid charge layer” —
sometimes called the “diffuse layer” — has counter-ions, and a few

co-ions, nearby in solution. This schematic does not show any Stern
layer.
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Electrical double layer (EDL)

Contrary to intuition, the origin of the repulsive force between two similarly
charged surfaces in a solvent containing counterions and/or added
electrolyte ions is entropic (osmotic), not electrostatic.

What maintains the diffuse double-layer is the repulsive osmotic pressure
between the counterions which forces them away from the surface and from
each other so as to increase their configurational entropy.



Electrical double layer (EDL)

Electrostatics in
the presence of electrolyte

Electrolyte
added

-jaimosphere 3
: : : ‘\ Negatively charged surface

Parameters used:

lon concentration p,

¥ = potential [Volt]
E= (d v/ dx) = field [Volt/m]



The Poisson-Boltzmann (PB) equation

The PB equation is built on the Poisson equation of electrostatics and
the Boltzmann equation of statistical mechanics.

Poisson equation
Maxwell equations

V-E = p/eg
V-B=0
VXE:—atB

V x B = py (J+€08tE)

With E the electric field, B the magnetic field, p the electric charge density and J the current density. £ is
the vacuum permittivity and p9 the vacuum permeability.

For the “static case” — which in colloid science effectively means
when the frequency is less than 10° s* — we can ignore the dynamic

parts of the Maxwell equation, the d/0t parts, and simplify the full
Maxwell equations.



The Poisson equation

|”

define an “electrical potential” (W, in V or mV), which is the voltage at

any position in the system.
the electric field (E) is definedas E=-V y

The voltage arises due to charge groups on the particle, and changes
through the EDL. For static systems the electric potential can be very
accurately-described by a single scalar equation called “the Poisson
equation”:

2 2 2
sz/:@yzl+6y2/+6y2/=_&
ox~ oy Oz &
This partial differential equation predicts the electrical potential (W,
in V or mV) at any position (x,y,z), when the volumetric charge

density (p., in C/m3) is known everywhere.



The Poisson equation

The permittivity (€) provides a measure of how unwell a material
“permits” an electric field to penetrate through it. Vacuum has a
value of € = g, = 8.854x101? C2/N-m?, and readily permits an electric
field through it; water has a value of about 80 £, = 7.1x10-1° C2/N-m?,
which counteracts an applied field.

Table 1-3. Static (zero frequency) electrical permittivities for several
liquids. The permittivity of vacuum is & = 8.8542x10'2 C?/N-m?2.
For most liquids the electrical permittivity (&) is represented by a
multiple of & called the “dielectric constant” and a ‘“relative
permittivity” (). For example, at 20 C water has & = 80.1, and so
the permittivity of water at 20 C is 80.1£0 = 7.09x107'° C?/N-m2. The
static dielectric constant depends weakly on temperature.'?

Sluid &atT= gatT= dielectric constant (&)
20C 25C atT (C)

acetone 21.2 20.7 & =21.2exp[-0.00472(T - 20)]
ammonia 17.4 16.9 &=17.4-0.090(T-20)
benzene 2.284 2274 & =2.284-0.0020(T - 20)
cyclohexane 2.023 2.015 &=2.023 - 0.0016(T - 20)
ethanol 25.1 243 & =25.1exp[-0.006217(T - 20)]
methanol 33.62 32.63 & = 33.62exp[-0.00599(7-20)]

water 80.37 78.54 & =80.37exp[-0.004605(T - 20)]




The Poisson equation

e How do we know the volumetric charge density p,?

e By adding up the charge on each of the N ion types in the system, we
know almost be definition that at any local position,

N Concentration of ion type i
Pe = Zzieci/

i=1 \
/ Elementary charge
Volumetric charge density Valence

e We expect that near to a negative particle surface we will have a
higher concentration of positive counter-ions in solution, and fewer
co-ions. But how do we quantify those concentrations, and thus
evaluate the charge density?



The Boltzmann equation

The Boltzmann distribution predicts quantitatively what fraction of
the time an entity — whether it is a stone, a gas molecule, or a
colloidal particle — will spend in a local position of any given volume,
given the energy at that local position.

For example, we know that gravitational potential energy is given by
mgh, and assuming gravitational constant (g) is constant and the
mass of the oxygen molecule (m) is identically the same, the higher
value of h increases the energy, meaning higher altitude will give you
less oxygen.

In terms of concentration of ions C,, the Boltzmann equation says for

ion type i, that
= Ei (x/ Y, z)
kT

/—ziey/)
\ kT

ci(x,y, Z)= Cio €EXp

=C,, exp



The Boltzmann equation

» Example: NaCl solution

e'¥(x) e¥(x)
CNa+ (x) = CNa+ (00) €Xp (_ k—]("}} CCI— (x) — CCI— (00) €Xp (+ T]
"g Counterions
R === C.
M

x=0 X



The Poisson-Boltzmann (PB) equation

e The energy for an ion due to an electric field is E; = z;e W, where in
this case the potential is defined to be zero far from the particles, in
the bulk solution (W, = 0).

e This expression for the ion’s energy is an approximation because it
neglects, for instance, the VDW attraction between the ions. But
especially for univalent ions, the approximation works well, and

importantly, it gives us an analytical result that we can use to think
through EDL problems.

e inserting the Boltzmann expression for concentration into the
expression for charge density p., and then the expression for charge
density into the Poisson equation, we obtain the full Poisson-

Boltzmann equation:
i~ ioo xp kT
£

Vzl// — =l




The Poisson-Boltzmann (PB) equation

Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or
Ca(S0,) (2:2),

z,=-2,=2 c,,=C,=C, sinhx = (e" —e” )/2

2.2
PB becomes VZ(ZW’) =k’ sinh 28V |\here K* = 227ec,
kT &T

The very famous parameter k' is called “the Debye length”. It plays a
key role in determining the electrostatic potential near a surface.



the Debye length

Importance of the Debye length = 1/x

:(chiezzf /e kT)m:[m"l] > Y =[m]

> Relation between charge and potential > Decay of surface potential due to

electrolyte
por Sy, —> w(x)=~ wexp( x)
VIS 0 1/
. Electrical
surface charge density (ps [=] C/m?) B
* Similar to a formula for charging
of capacitor with distance o

Electrolyte concentration
increases from curves (1) to (3)

between the plates = 1/

/

Debye length 1/« is the

major estimator of the length T T, Tk, ey
of the electrostatic interactions colloidal particle

W rel -k -= -

» The Debye length is equivalent to
the decay length of the curve




the Debye length

Potential decay in the presence of electrolyte

-70

= Planar surface at low potentials

x
v (x) = y,exp (— 1/_1(')
—]-s0 J

[Na'],=1.32 M

ik = Debye length 1/x is a major estimator
s o _ for the range of the electrostatic
£ o - interactions near the surface
% o § 1/2
" e K= Z:Cw,.ezz,.2 /6‘ kKT | = [m_l]
—-20 i
= l More practical expressions
—{-10
02
Bulk values

| e e e %= 0

0 + 1 2 3 4 Q 5
1% Sk
Distance x (nm)

k=3.288v1 [nm™']

0.0

Potential and ionic density profiles for a 0.1 M monovalent electrolyte such as

NaCl near a surface of charge density ¢ = —0.0621 Cm ~* (about one electronic charge I — 1 C 2 M I . h
per 2.6 nm’), calculated from Eqs (12.39) and (12.25) with y, = —66.2 mV obtained from — . Z - Onlc Strengt
25

11
the Grahame equation. The crosses are the Monte Carlo results of Torrie and Valleau (1979




the Debye length

Expressions and examples for Debye length = 1/«

Kk =3.2881 [nm™'] I= %ZC@.Z? [M ] lonic strength

* Useful expressions

0.304/,/[NaCl] nm for 1:1 electrolytes(e.g., NaCl)
0.176/./ [CaC]zj nm for2:1and 1:2electrolytes

1/ =
(e.g.,CaCl, and Na,SO,)

0.152//[MgSO,] nm for 2:2 electrolytes (e.g., MgSO,)

* Estimates of the Debye length for a 1:1 electrolyte (e.g. NaCl)

/=
.~ molecular size — no
~(0.3 nm for Cel =1M long-range interactions

~lmmfor C,=0.1M
~10 om for C, =0.001 M

~960 nm for C,, =1x 107 M < nhot ac.hievable in n.o'rmal
experimental conditions



the Debye length

Table 1-2. Debye length (x', in nm) at various concentrations of
aqueous solution for T =293 K. Typical 1:1 salts are KCIl or NaCl; a
2:1 salt is CaCl.. The Debye length decreases with the square root
of the ionic strength, and increases with the square root of
temperature. So for instance to find the Debye length of a 23 mM
KCI solution at T = 300 K, we might start with the Debye length for a
1:1 salt at 1 mM, which is 9.65 nm, then multiply by two factors (300
K /293 K)%5 x (1 mM /23 mM)°® = 0.211 to get 2.04 nm.

conc 1:1 2:1 3:1 2:2 3:2 3:3
(mM) (KCl) (CaCl) (AICL) (CaS0y) [AL2(SO4)s] (AIPOy)
0.001 305 176 125 153 78.8 102
0.003 176 102 71.9 88.1 455 58.7
0.01 96.5 55.7 394 48.2 249 32.2
0.03 55.7 322 22.7 27.9 144 18.6
0.1 30.5 17.6 12.5 15.3 7.88 10.2
0.3 17.6 10.2 7.19 8.81 4.55 5.87
1 9.65 5.57 3.94 4.82 2.49 3.22
3 5.57 3.22 2.27 2.79 1.44 1.86
10 3.05 1.76 1.25 1.53 0.788 1.02
30 1.76 1.02 0.719 0.881 0.455 0.587
100 0.965 0.557 0.394 0.482 0.249 0.322
300 0.557 0.322 0.227 0.279 0.144 0.186

1000 0.305 0.176 0.125 0.153 0.0788 0.102




The Poisson-Boltzmann (PB) equation

Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or
Ca(S0,) (2:2),

z, =-2,=2 c,,=C,=C, sinhx = (e" — e"‘)/Z

2 2
PB becomes Vz(ze'//) =k’ sinh 22V |\vhere K’ = 227¢c,
kT kT &T

The very famous parameter k' is called “the Debye length”. It plays a
key role in determining the electrostatic potential near a surface.



Debye-Huckel results for electric potential

Let’s look at the PB equation near to a charged plate, using only the x
dimension, where x = 0 at the surface of the plate and extends to
infinity.

Furthermore, we will make an approximation that W is small, less
than kT/e = 25.7 mV at room temperature.

For small values of w, sinh (w) =w + w3/6 + ... = w, and so the PB
equation can be approximated as

Zey . Zey d*y
V? = k” sinh —
( kT ) © T ix*

In order to solve the PB equation we need two boundary conditions.
Two common boundary conditions are

= ](‘2[//

x=0:y =y,
x—>o:y —>0ordy/dx —>0



Debye-Huckel results for electric potential

e general solution: ¥ =Be” +Be™

e Debye-Huckel equation for electric potential near to a single flat
plate (upon applying the boundary conditions):

v =y.e "




From Lecture 4:

Electrostatic forces

* The electrical potential decays away from a flat surface at a rate
given roughly by the Debye-Huckel equation:

W =y,e
/!

Surface potential

» Typical magnitudes of the surface potential (W) are 10 to 150 mV,
and can be negative or positive. Since these potentials arise due
to the surface charges, the relationship between the surface
charge density (units C/m?) and the surface potential is:

Distance from the surface

ps = ?KWO

Electrical permittivity



Debye-Huckel results for electric potential

general solution: ¥ = Be” +B,e™

Debye-Huckel equation for electric potential near to a single flat
plate (upon applying the boundary conditions):

v =y.e "

At the plate surface the electric potential is W,, while just a few
Debye lengths away, the electric potential decays to nearly zero.
Example:

A plate has a potential of yo = -39 mV at its surface. The plate is in a
5.4 mM NaCl solution at 7= 305 K. Find the Debye length, and then

the electric potential at a distance of 7.0 nm from the plate. At this T, &r
=76.0 (Table 1-3).

answer: the Debye length k' = 4.13 nm. y(7.0 nm) = -7.16 mV.



Debye-Huckel results for electric potential

2"d case: let’s look now at the potential around a spherical particle of
radius (a). For spherical coordinates

2
in(,zdv')zdv;ﬁd_w:,czw
re dr dr dr r dr

r=a:y =y,
r>ow:y —>0o0rdy/dr—>0

the Debye-Huckel equation for a sphere is

v =y, %exp[— k(r —a)]

In fact, if we have a large sphere, so that if when we definex=r-a
we see X/a « 1, this reduce to

w=y,e " “flat earth approximation”




Debye-Huckel results for electric potential

e 3" case: the electric potential between two charged plates with
boundary conditions

x=-L/2:y=y,, x=L/2:y =y,

e This gives:

[//:

e+/d, _e—xL

+xl./2 —xL/2
{V/le —y,e Jem

e+xL _e—xL

+xl/2 —id/2
('//23 —y,€ Jexx




Surface charge density

e Oftentimes we want to predict the surface charge density (p. [=]
C/m?), knowing the surface potential, or vice versa.

e asurface plus its EDL form an electroneutral system. Thus, the
charges at the surface and the charges in the bulk fluid balance. This
can be written mathematically for a flat plate as

_U: PedV+Ljpst =0=> ;ij,o‘_,dx+ps =0

e This equation says that the surface charges must be balanced by the
charges in the fluid from near the plate to infinity. A rearrangement
of the Poisson equation tells us

oo

iy p Ay integrate d*y T (d,/,)
=1 =— — =g dx =¢|d| —
dx* e P T T Ps -(.: dx’ -([ dx




Surface charge density

e The condition of electroneutrality implies that

=), = (@)l =olo- (@) == (),




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qj
dx 0

e The condition of electroneutrality implies that

ro=e|(5), ..~ (@) ) =~ (@) ) = (&), - o=

o0

dw ., (fdw
,os—¢s‘_([dx2 dx—g‘(‘;d(aj




The Poisson equation

I”

define an “electrical potential” (W, in V or mV), which is the voltage at

any position in the system.
the electric field (E) is definedas |[E = -V ¢

The voltage arises due to charge groups on the particle, and changes
through the EDL. For static systems the electric potential can be very
accurately-described by a single scalar equation called “the Poisson
equation”:

o’y ©o? o°
v Sy Oy
ox~ oy- o0z &

sz/ =

This partial differential equation predicts the electrical potential (W,
in V or mV) at any position (x,y,z), when the volumetric charge
density (p., in C/m3) is known everywhere.



Surface charge density

e Recall the electric field at the surface is Ey=— (d_qj
dx 0

e The condition of electroneutrality implies that

ro=e|(5), ..~ (@) ) =~ (@) ) = (&), - o=

o0

dw ., (fdw
,os—¢s‘_([dx2 dx—g‘(‘;d(aj




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qj
dx 0

e The condition of electroneutrality implies that

ro=e|(), ..~ (@) ) =~ (@) ) =~ (&), ==

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution (summing over all species) yields:

dZéVCi_ u ZieCioo ( Zl-e‘IJ) (dqj)
dx A AVT




The Boltzmann equation

The Boltzmann distribution predicts quantitatively what fraction of
the time an entity — whether it is a stone, a gas molecule, or a
colloidal particle — will spend in a local position of any given volume,
given the energy at that local position.

For example, we know that gravitational potential energy is given by
mgh, and assuming gravitational constant (g) is constant and the
mass of the oxygen molecule (m) is identically the same, the higher

value of h increases the energy, meaning higher altitude will give you
less oxygen.

In terms of concentration of ions, the Boltzmann equation says for ion

type i, that
= Ei (x/ Y, Z)j
\ kT

(— 7.
=C,, exp zley/j
\ kT

¢, (x, y,z): Cis €XP




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qj
dx 0

e The condition of electroneutrality implies that

ro=e|(), ..~ (@) ) =~ (@) ) =~ (&), ==

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution (summing over all species) yields:

dZéVCi_ u ZieCioo ( Zl-e‘IJ) (dqj)
dx A AVT




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

ro=e|(), ..~ (@) ) =~ (@) ) =~ (&), ==

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution (summing over all species) yields:

dZéVCi_ u ZieCioo ( ZleLP)(d‘P)
dx  Zs kTt OP\T T ) \ax

l

N . N
Z ZEC;. exp(— Z’e"l/) d*y zieV
_ 5 kT — € IxZ = —z zieCinexp (— )
&

Vi kT

i



The Poisson-Boltzmann (PB) equation

e The energy for an ion due to an electric field is E; = z,e W, where in
this case the potential is defined to be zero far from the particles, in
the bulk solution.

e This expression for the ion’s energy is an approximation because it
neglects, for instance, the VDW attraction between the ions. But
especially for univalent ions, the approximation works well, and
importantly, it gives us an analytical result that we can use to think
through EDL problems.

e inserting the Boltzmann expression for concentration into the
expression for charge density, and then the expression for charge
density into the Poisson equation, we obtain the full Poisson-

Boltzmann equation: 5%
zey
Zzieciw exp(— T )
VZ — __i=1
4 £




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

ro=e|(), ..~ (@) ) =~ (@) ) =~ (&), ==

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

dZéVCi_ u Zl-eCioo ( Zl-e‘P) (dqj)
dx A AVT

= . N
Z ZEC;. exp(— Z’el’”) d*y zieV
V2 = — = - kT —— ¢ dx2 = _Zzieciooexp (_ 1T )
l




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

ro=e|(), ..~ (@) ) =~ (@) ) =~ (&), ==

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

N
d Z{V Ci ZieCioo

dx KT exp(_

zl-elIJ) (d‘P) e d*V¥ (dlli)
kT ) \dx) kT dx? \dx

= . N

Zzieciw exp(— Z’e‘//) d*y zieV
A | 0S5
& [




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

G IR BN

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

dx - kT

l

d¥yc; § z;eCioo ( zieLIJ) (d‘P) e d*¥ (dlli) e d (dLIJ)2
P\ hr ) \ax) T kT dx? \dx) T 2kT dx \dx

. Integrate from x> to x =0:

ZC(x—O) ZC(x—> )—mj(

(d‘P

dx)x 0d<d‘P)2 I (dlli)2
) dx)  2kT \dx/,
dx ) x—o0




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

ro=e|(), ..~ (@) ) =~ (@) ) =~ (&), ==

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

N
d Z{V Ci . ZieCioo (
dx - kT AP

l

Zl-eLIJ) (d‘P) e d*V¥ (dlli) e d (dlli)2
kT )\dx/) kT dx?2 \dx/) 2kT dx\dx

e Integrate from x—>oo to x =0:
2

N N
L 0T LR okt \dx ),
l l




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

ro=e|(), .. (@) ) =~ @) = (), = o5

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

N
d Z{V Ci . ZieCioo (
dx  Zs kr P

l

zieLP) (d‘P) e d*V¥ (dlli) e d (dlli)2
kT )\dx/) kT dx? \dx/) 2kT dx\dx

e Integrate from x—>oo to x =0:
2

N N

DG = o+ ()
0T L7 T 2k \dx )
l l




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

G RN AR

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

N N 2 2
dYi G Z;eCio ( zieLP) (d‘P) _ed LIi(dlli) e d (dlli)
dx  Zu kT P\ Tk )\ax) T kT dx? \dx) T 2kT dx \dx

l

. Integrate from x—>eo to x O

&
ZC‘O ZC‘°°+2kT< ) ZC“’O-I_ZkTg




Surface charge density

e Recall the electric field at the surface is Ey=— (d_qJ
dx 0

e The condition of electroneutrality implies that

B ) o)) -

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

N N 2 2
dYi G Z;eCio ( zl-elIJ) (d‘P) e d*¥ (dlli) e d (dlIJ)
dx  Zu kT P\ Tk )\ax) T kT dx? \dx) T 2kT dx \dx

l

. Integrate from x> to x =0:

Total concentration of ions at an isolated surface of
z Cio = z Cioo + ZkTS charge density p,




Surface charge density

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

N N
ps% | Total concentration of ions at an isolated surface of

Z Cio — z Cioo + 2T e charge density p.

l l




Surface Charge denSity Sometimes referred to as

the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

N N N N
) Ziel'po
=kt (Y o= Y oo =26kt Y uvern (- 557) - D o
i i i

i

N N
pSZ Total concentration of ions at an isolated surface of

Z Cio = z Cioo + 2 kTe charge density p;

l l




The Boltzmann equation

The Boltzmann distribution predicts quantitatively what fraction of
the time an entity — whether it is a stone, a gas molecule, or a
colloidal particle — will spend in a local position of any given volume,
given the energy at that local position.

For example, we know that gravitational potential energy is given by
mgh, and assuming gravitational constant (g) is constant and the
mass of the oxygen molecule (m) is identically the same, the higher

value of h increases the energy, meaning higher altitude will give you
less oxygen.

In terms of concentration of ions, the Boltzmann equation says for ion

type i, that
= Ei (x/ Y, Z)j
\ kT

(— 7.
=C,, exp zley/j
\ kT

¢, (x, y,z): Cis €XP




Surface Charge denSity Sometimes referred to as

the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

N N N N
) Ziel'po
=kt (Y o= Y oo =26kt Y uvern (- 557) - D o
i i i

i

N N
pSZ Total concentration of ions at an isolated surface of

Z Cio = z Cioo + 2 kTe charge density p;

l l




SU rfa ce Cha rge denSity Sometimes referred.to as

the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

Zlel'po u
p = 2ekT z ClO 2 icc | — = 2ekT 2 Clooexp( kT ) _ Z Cioo

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|
=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

2 = 2ekTC ( (ZelIJO)_I_ ( Ze\IJO) 2)
Pl = 2€ o | exp T exp T




Sometimes referred to as

SU rfa ce Cha rge denSity the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

Zl'el'po u
p = 2ekT z ClO 2 icc | — = 2ekT 2 Clooexp( kT ) _ Z Cioo

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|
=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

For an aqueous 1:1 electrolyte

5 Ze¥, Ze¥, such as NaCl against a negatively
ps© = 2ekTCy (exp ( KT ) + exp ( ) - ) charged surface of p. =-0.2 C m:

kT
1:1 Electrolyte
Concentration (M) Yo (mV)
0 (hypothetical) —
10~/ (pure water) —_477
104 —300
107° 241
1072 —-181
107" —123

1 —67



Surface charge density

the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

zieWy
p% = 2ekT z Cio — 2 i | = 2ekT 2 Clooexp( T ) — 2 Cioo

N

l

YA
p2 = 2ekTCy (exp (

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|

=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

Note that for no electrolyte we obtain an infinite
potential, which is unrealistic; a pure liquid such as
water will always contain some dissociated ions.

If C.o > 0, W, needs to approach = in order
to maintain constant charge density p.

For an aqueous 1:1 electrolyte
such as NaCl against a negatively

kT ) +exp ( kT ) a 2) charged surface of p,=-0.2 C m2

1:1 Electrolyte

Concentration (M) Vo (mV)
0 (hypothetical) — 0
10~/ (pure water) —477
104 —300
1077 241
1072 —181
107" —123

1 —67
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Sometimes referred to as
the Grahame equation

Surface charge density

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

N

Zl'el'po
= 2ekT z ClO 2 joo | — = 2¢ekT 2 Clooexp( kT ) — Z Cioo

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|
=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

For an aqueous 1:1 electrolyte
Ze¥, —ZeLIJO such as NaCl against a negatively
+ exp —

charged surface of p.=-0.2 Cm™:

p% = 2ekTCy (exp (

kT kT
_ oo 1:1 Electrolyte
* Note that for no electrolyte we obtain an infinite Concentration (M) Yo (mV)
potential, which is unrealistic; a pure liquid such as ¢ (ypothetical) %
water will always contain some dissociated ions. 10‘471 (pure water) —477
e At constant surface charge density the surface 18_3 :32?
potential falls progressively as the electrolyte 10-2 181
107" —123

concentration rises.
1 —67



Sometimes referred to as

SU rfa ce Cha rge denSity the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

Zl'el'po o
= 2ekT z ClO 2 joo | — = 2¢ekT 2 Clooexp( kT ) — Z Cioo

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|
=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

For an aqueous 1:1 electrolyte

5 Ze¥, —ZeY, such as NaCl against a negatively
ps© = 2ekTCy (exp ( KT ) + exp ( ) - ) charged surface of p. =-0.2 C m:

kT
From the tabulated values of W, we can determine the ionic 11 Electrolyte
. 0 . L. ) Concentration (M) 'ﬁo (mV)

concentrations at the surface using Boltzmann distribution:
0 (hypothetical) —®
10~/ (pure water) —477
107° ~300
107 —241
1072 —181
107" —123

1 —67



The Boltzmann equation

The Boltzmann distribution predicts quantitatively what fraction of
the time an entity — whether it is a stone, a gas molecule, or a
colloidal particle — will spend in a local position of any given volume,
given the energy at that local position.

For example, we know that gravitational potential energy is given by
mgh, and assuming gravitational constant (g) is constant and the
mass of the oxygen molecule (m) is identically the same, the higher

value of h increases the energy, meaning higher altitude will give you
less oxygen.

In terms of concentration of ions, the Boltzmann equation says for ion

type i, that
= Ei (x/ Y, Z)j
\ kT

(— 7.
=C,, exp zley/j
\ kT

¢, (x, y,z): Cis €XP




Sometimes referred to as

SU rfa ce Cha rge denSity the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

zieWy
2 = 2ekT zClo 2 i | = 2ekT Z:Cooexp( T )—ZCioo

N

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|

=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

2 = 2ekTC ( (ZelIJO)_I_ (—Ze\IJO) 2)
Pl = 2€ o | exp T exp T

From the tabulated values of W, we can determine the ionic
concentrations at the surface using Boltzmann distribution:

in 10”7 M 1:1 electrolyte, where W, = -477.1 mV, the counterion
concentration at the surface is 11.64 M and 101> M for the co-
ions. (total surface ion conc. ~11.64 M = excess ion conc.)

At 1 M, W,=-67 mV, the surface conc. are 13.57 M and 0.07 M
for counter- and co-ions. (total ~ 13.64 M, excess ~11.64M)

For an aqueous 1:1 electrolyte
such as NaCl against a negatively
charged surface of p.=-0.2 Cm™:

1:1 Electrolyte

Concentrati)gn (™M) Vo (mV)
0 (hypothetical) — 0
10~/ (pure water) —477
104 —300
1077 241
1072 —181
107" ~123

—67



Sometimes referred to as
the Grahame equation

Surface charge density

e To find the relation between the surface charge density p. and the
surface potential LIJO, we invoke the Boltzmann distribution again:

N

Zl'el'po

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= |z]|
=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,
For an aqueous 1:1 electrolyte

5 Ze¥, —ZeY, such as NaCl against a negatively
ps© = 2ekTCy (exp ( KT ) + exp (—) - ) charged surface of p. =-0.2 C m:

kT
the total ion concentration at the surface can be calculated 1 Electrolyte
Concentration (M) Yo (mV)
as before, and the excess to bulk is set by p; only. -

* in107 M 1:1 electrolyte, where W, = -477.1 mV, the counterion ?éﬁﬁgmztﬁ:lt)er) :;77
concentration at the surface is 11.64 M and 10*> M for the co- -4 300
ions. (total surface ion conc. ~¥11.64 M = excess ion conc.) 1073 —241

« At1M, W,=-67 mV, the surface conc. are 13.57 M and 0.07 M 10‘? —18;

10™ 12

for counter- and co-ions. (total ~ 13.64 M, excess ~11.64M)

—67



Surface charge density

e Recall the electric field at the surface is E, = — (d_qJ
dx 0

e The condition of electroneutrality implies that

o=e|(), ..~ @) ) =~ @) = (), = o5

e Turning attention to the ionic concentration, differentiating the
Boltzmann distribution yields:

N
d Z{V Ci _ zieCio (
dx  Zs kT P\T kT

l

Zl-eLIJ) (d‘P) e d*¥ (dlll) e d (dLIJ)2
dx/) kT dx? \dx/) 2kT dx \dx

e |ntegrate:

2k charge density p.

N N

C c P2 Total concentration of ions at an isolated surface of
2 0 § oo Ts
i i




SU rfa ce Cha rge d enSity Sometimes referred.to as

the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

zieW, =
p.2 = 2ekT z Cio — 2 io | = 2ekT 2 Clooexp( T ) — 2 Cioo

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|
=1and C.. = [Na*].. = [ClI'].. = [NaCl].., = C.,

2 = 2ekTC ( (ZelIJO)_I_ ( Ze\IJO) 2)
P = 2¢€ o | exp T exp T




SU rfa ce Cha rge denSity Sometimes referred.to as

the Grahame equation

e To find the relation between the surface charge density p. and the
surface potential W,, we invoke the Boltzmann distribution again:

Zlel'po o
= 2ekT z ClO 2 joo | — = 2¢ekT 2 Clooexp( kT ) — Z Cioo

l

e To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z= | z|
=1and C.. = [Na*].. = [Cl'].. = [NaCl]., =C.,

2 _ ek TC ( (ZeLIJO) N ( Ze\IJO) 2)

e This can be factored into

5 Ze¥V, —Ze¥V, ?
ps© = 2ekTCy | exp ( ) — exp ( ) In other words,

2kT 2kT

Ze¥V, —Ze¥,
Ps = 2ekT Coo (exp( 2kT ) B exp( 2kT ))




Surface charge density

e Forlow surface potentials (W, < 25 mV), use Taylor seriese” =1+w+w”/2+...

ZeY ZeY,
o = [ZERTC ((1+ AT W i +...))

ZeW 2eCy
pPs = 1/ZekTCoo( kTO) = |57 ZeV,

Ze¥V, —ZeY,
ps = ekl o (exp ( 2KT ) B exp( 2KT ))



Surface charge density

e Forlow surface potentials (W, < 25 mV), use Taylor seriese” =1+w+w”/2+...

ZeY ZeY,
o = [ZERTC ((1+ AT P PP ke +...))

ZeW 2eCy
pPs = 1/ZSkTCoo( kTO) = |57 ZeV,

e For the general case (where Z:Z is not a requirement, say CaCl, or
mixtures of NaCl and CaCl,) at low surface potentials (W, < 25 mV),
the Grahame equation simplifies to

N
2 ZiZeZCioo )
: ekT 0

,\‘ l

|
™

Ps




Surface charge density

e Forlow surface potentials (W, < 25 mV), use Taylor seriese” =1+w+w”/2+...

ZeY ZeY,
o = [ZERTC ((1+ AT W i +...))

ZeW 2eCy
pPs = 1/ZekTCoo( kTO) = |57 ZeV,

e For the general case (where Z:Z is not a requirement, say CaCl, or
mixtures of NaCl and CaCl,) at low surface potentials (W, < 25 mV),
the Grahame equation simplifies to

|
™

N
2p2(, .
2 : zi“e“Cio W Check for yourself that these two equations
Ps 0

ekT are indeed equivalent for Z:Z salts like NaCl

\ i




Surface charge density

e Forlow surface potentials (W, < 25 mV), use Taylor seriese” =1+w+w”/2+...
Ze¥V, Ze¥V,
= .[2ekTC, | 1 el =(1=
P Ekc<(+2kT+ ) ( 2kT ))

ZeLIJO) _|2eC

e For the general case (where Z:Z is not a requirement, say CaCl, or
mixtures of NaCl and CaCl,) at low surface potentials (W, < 25 mV),
the Grahame equation simplifies to

Ze¥V,

N

. zzizezciooLIJ

\ i And we recover the famous Debye length k!
zi?e?Cico

e Which can be rewritten as:  ps = ek, where k = \/Z{V kT




The Poisson-Boltzmann (PB) equation

e Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or
Ca(S0,) (2:2),

=c_ =¢C, sinhx = (e" —e " )/2

2 2
e PB becomes Vz(ze'//) =k’ sinh ey where||x? = 22 e,
kT kT &T

e The very famous parameter k! is called “the Debye length”. It plays a
key role in determining the electrostatic potential near a surface.

Check for yourself that these two Debye length k1 are indeed the same for Z:Z electrolytes

_ _ N Zi%€?Cico
ps = ek¥y, where x = \/Zl o




Surface charge density

e Forlow surface potentials (W, < 25 mV), use Taylor seriese” =1+w+w”/2+...
Ze¥V, Ze¥V,
= .[2ekTC, | 1 el =(1=
P SkC<(+2kT+ ) ( 2kT ))

Ze‘IJO) _|2eC

e For the general case (where Z:Z is not a requirement, say CaCl, or
mixtures of NaCl and CaCl,) at low surface potentials (W, < 25 mV),
the Grahame equation simplifies to

Ze¥V,

N

. zzizezciooqj

\ i And we recover the famous Debye length k!
zi?e?Cico

e Which can be rewritten as: | ps = €k'¥p, where k = \/Z{V kT




From Lecture 4:

Electrostatic forces

* The electrical potential decays away from a flat surface at a rate
given roughly by the Debye-Huckel equation:

=y
N\

: Distance from the surface
Surface potential

» Typical magnitudes of the surface potential (W) are 10 to 150 mV,
and can be negative or positive. Since these potentials arise due
to the surface charges, the relationship between the surface
charge density (units C/m?) and the surface potential is:

ps = fKWO
|

Electrical permittivity
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