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Announcements 

• Syllabus change
• Invention disclosure assignment (15%) – removed
• New grading scheme

ACTIVITY Weight
Attendance and Participation* 20% + 10% = 30%
In-class Presentations 30%
NSF Fellowship Proposal 15% + 5% = 20%
Invention Disclosure (group) 15%
Final Project (group) 20%

• Mid-term + final course reviews for the course (5%) 
bonus to final grade – please make sure to do it to not 
miss out – due Wednesday March 6 (tomorrow).



Announcements 

• As a reminder, things that go into your participation 
grade (now 30%):

• Attendance
• Polls
• Perusall
• Peer presentation evaluations
• Asking questions following presentations



Rigid Nonspherical Particles: The Nematic Phase

• For molecules that are not spherical, packing and ordering transitions 
can occur that are more complex than those for spherical molecules.

• the simplest nonspherical shape is a stiff, long cylinder 

Transmission electron micrograph of TMV particles negative stained to enhance 
visibility at 160,000× magnification

https://en.wikipedia.org/wiki/Tobacco_
mosaic_virus

https://en.wikipedia.org/wiki/Tobacco_mosaic_virus
https://en.wikipedia.org/wiki/Tobacco_mosaic_virus


Rod-Like Objects

tobacco mosaic virus

https://www.google.com/search?q=tobacco+mosaic+virus+electron+micrograph&tbm=isch&source=iu&ictx=1&fir=VCHszPqFz02MJM%
253A%252Cys5UEQPy3oxCoM%252C_&usg=__4QlVfGScIPhDHu33e-dV01X-
65A%3D&sa=X&ved=0ahUKEwji5ZGC3KjYAhWr64MKHSdhCScQ9QEINjAE#imgrc=VCHszPqFz02MJM:

L= 300 nm long, d=18 nm wide

𝐷 =
𝑘!𝑇
3𝜋𝜇!𝐿

(ln
L
d + 0.3)

Diffusivity:



Lecture 5 Poll: Cylinder Packing

Consider only excluded volume effects, how should we expect 
the closest packing of cylindrical rods be compared to the HCP 
limit (~0.74) of hard spheres? 

• A. higher
• B. the same
• C. lower

https://forms.gle/y4xy3HsbFV6npW956Long URL

Short URL https://shorturl.at/gkGR7

You need to log in using your umich.edu account in order to access this poll

https://forms.gle/y4xy3HsbFV6npW956
https://shorturl.at/gkGR7




https://en.wikipedia.org/wiki/Circle_packing#:~:text=In%20the%20two%2Ddime
nsional%20Euclidean,is%20surrounded%20by%20six%20other



Packing of Cylinders

• The closest packing of cylindrical rods occurs when they are parallel to 
each other and packed hexagonally in the plane orthogonal to their 
axes; in this case, ф = 0.9069.

• If the density of long ordered rods is decreased, a melting transition will 
occur in which the in-plane hexagonal order is lost, but the 
orientational order of the rod axes is partially preserved. 

• This partially ordered state is called a nematic. States with partial order, 
including the nematic state, are common for stiff molecules of high 
aspect ratio. 



Packing of Cylinders
𝜙234 = 0.9069

hexagonal packing (2D)

𝑖𝑓𝜙 ≪ 𝜙234, i.e., 𝜈 < 1/𝑑5𝐿 -> hexagonal packing disappears

but for long rods, orientational order can persist

concentration regimes:
from Doi and 
Edwards, Oxford, 
1986

n = no. rods/vol.
end-on view of 
packed 
cylinders

𝜙 = 𝜈	(
𝜋
4
)𝑑5𝐿

vol. of cylinder

d

L = cylinder length



hard prolate ellipsoids

http://homepage.univie.ac.at/franz.vesely/

Frenkel and Mulder, Molecular Physics, 1985

Phase behaviour for non-attracting axisymmetric hard particles

aspect ratio

nu
m

be
r d
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ty

isotropic
nematic

smectic A

“spheroids” – when two axes are same length



Packing of Cylinders

• The degree of orientational order in a nematic is described by an 
orientational order parameter S. S quantifies the degree to which 
molecular orientations are parallel to a common nematic axis. S = 1 
corresponds to a perfectly parallel orientation of all rod-like 
molecules or particles, while S = 0 corresponds to a completely 
random, or isotropic, distribution of molecular orientations:

𝑆	 ≡
3
2
< 𝑐𝑜𝑠5 𝜃 > −

1
2



Nematic Order
q

𝑆	 ≡
3
2
< 𝑐𝑜𝑠5 𝜃 > −

1
2

define nematic order parameter (scalar):

0 < S < 1

<?>	≡ 	∫? 𝜓 𝒖 𝑑𝑢5 = ∫6
57∫6

7? 𝜓 𝜃,𝜙 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙

𝒖	is	a	unit	vector, 𝒖 = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)

𝜓 𝒖 d𝑢5 = probability that a rod’s orientation lies 
between 𝒖  and 𝒖 +d 𝒖

Note: S here is not entropy 
or structure factor

𝑢𝜃
𝜙

𝑛



<?>	≡ 	∫? 𝜓 𝒖 𝑑𝑢5 = ∫6
57∫6

7? 𝜓 𝜃,𝜙 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙

𝒖	is	a	unit	vector, 𝒖 = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)

𝜓 𝒖 d𝑢5 = probability that a rod’s orientation lies 
between 𝒖  and 𝒖 +d 𝒖

Reminder: Spherical coordinate system

https://en.wikipedia.org/wiki/Spherical_coordinate_system



𝑆	 ≡
3
2
< 𝑐𝑜𝑠5 𝜃 > −

1
2

0 < S < 1

<?>	≡ 	∫? 𝜓 𝒖 𝑑𝑢5 = ∫6
57∫6

7? 𝜓 𝜃,𝜙 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙

𝒖	is	a	unit	vector, 𝒖 = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)

𝜓 𝒖 d𝑢5 = probability that a rod’s orientation lies 
between 𝒖  and 𝒖 +d 𝒖

Note: S here is not entropy 
or structure factor

𝑢𝜃
𝜙

𝑛



Onsager theory of nematic transition

𝑧 𝒖, 𝒖′ ≡ 	𝛽 𝒖, 𝒖′ = 2𝑑𝐿5 𝒖	×	𝒖: = 2𝑑𝐿5sin(u’,u)

Volume 𝑧 excluded to center of a second rod (shaded area):

2d

d = rod diameter; L = rod length 

(induces rods to become more nearly parallel)
sin(u’,u)

each	(of	2)	
shaded	areas =
"
#
𝐿#sin(u’,u)

sin(u’,u
)	𝐿/2

𝐿

change of entropy per unit volume: 
(due to excluded volume)

̅𝑧(u) =	∫𝜓 𝒖′  𝛽(u’,u) 𝑑𝑢′5
Average volume excluded to a rod of orientation u 

2nd	shaded	area

u’

u



Excluded Volume Effects
𝑧 = excluded volume parameter

vol. V

vol. 𝑧
probability that a particular particle 
overlaps another: 𝑣𝑧 = f, volume fraction
for N particles, number of configurations: 

𝑆 = 𝑘E𝑙𝑛Ω = −𝑘E𝑁𝑙𝑛[𝑣 1 − 𝑣𝑧/2 ]

change of entropy per unit volume: 𝑘E𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

(due to excluded volume)

Ω ≈
[𝑉(1 − 𝑣𝑧/2)]F

𝑁! ΛGF
factor of 2 
avoids double 
counting

consider dilute particles

≈  − 𝑘E 𝑉[𝑣𝑙𝑛𝑣 + 𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

add a particle

(ignore const.)
𝑁 = 𝑣𝑉

for small 𝑣 

≈ −
1
2
𝑘E𝑧𝑣5



Onsager theory of nematic transition

𝑧 𝒖, 𝒖′ ≡ 	𝛽 𝒖, 𝒖′ = 2𝑑𝐿5 𝒖	×	𝒖: = 2𝑑𝐿5sin(u’,u)

Volume 𝑧 excluded to center of a second rod (shaded area):

2d

d = rod diameter; L = rod length 

(induces rods to become more nearly parallel)
sin(u’,u)

each	(of	2)	
shaded	areas =
"
#
𝐿#sin(u’,u)

sin(u’,u
)	𝐿/2

𝐿

change of entropy per unit volume: 

∆𝑆 ≈ −
1
2
𝑘E𝑧𝑣5

(due to excluded volume)

̅𝑧(u) =	∫𝜓 𝒖′  𝛽(u’,u) 𝑑𝑢′5
Average volume excluded to a rod of orientation u 

spheres cylinders
-> − I

5𝑘E ̅𝑧(u)𝜈5 

2nd	shaded	area

u’

u

𝜈= #rods/vol.
Entropy	𝑆	and	free	energy	𝐴	are	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒



Orientational Entropy 

𝐴I 𝜓 = −𝑇𝑆 = 𝜈𝑘E𝑇p𝜓 𝒖 𝑙𝑛[𝜓 𝒖 ] 𝑑𝑢5

(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	𝑡𝑜: 	𝑆 = −𝑘E𝑁∑J𝑃J 𝑙𝑛 𝑃J ) like in Shannon entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

𝜈 = #rods/vol. = N/V

(penalizes orientation)

Entropy	𝑆	and	free	energy	𝐴	are	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒



Recall Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘E𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = K%

F!M&%

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘E𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘E𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘E𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘E𝑇

= −𝑆/𝑘E

(const. involves L )

𝐸N= 0, for every state j

(N large)



Recall Non-Interacting Particles 
(Generalization 3: non-uniform probability 

distribution)
𝐴/𝑘E𝑇 𝑁J =number of particles in state i= −𝑆/𝑘E ={

J

𝑁J 𝑙𝑛 𝑃J

= 𝑁{
J

𝑃J 𝑙𝑛 𝑃J

𝑃J =probability (or fraction of times) 
that particle is in state i = 𝑁J/N
𝑁 = total number of particles

−{
J

𝑃J 𝑙𝑛 𝑃J = Shannon entropy (per 
particle) from information 
theory

high Shannon entropy means low 
information content, and vice versa

Maximum entropy

Claude Shannon, 
Univ. of Mich. grad, 
born in Petoskey, MI

“Information content of the known universe:” 10I6
'(&

(equal a priori probability of each state) 



Orientational Entropy 

𝐴I 𝜓 = −𝑇𝑆 = 𝜈𝑘E𝑇p𝜓 𝒖 𝑙𝑛[𝜓 𝒖 ] 𝑑𝑢5

(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	𝑡𝑜: 	𝑆 = −𝑘E𝑁∑J𝑃J 𝑙𝑛 𝑃J ) like in Shannon entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

𝐴5 𝜓 = I
5 𝜈

5𝑘E𝑇[∫∫𝜓 𝒖 𝜓 𝒖′ 𝛽(u’,u)𝑑𝑢5𝑑𝑢′5]

If excluded volume interactions are pair-wise additive:
(valid if concentration is not too high ~ 10% or so)

(note that 𝐴I 𝜓  is a functional of	𝜓 𝒖 ) 𝜈 = #rods/vol. = N/V

𝐴5 =
I
5𝑘E𝑇 ̅̅𝑧𝜈5 ̅̅𝑧 is average over both 𝜓 𝒖 and	𝜓 𝒖′  

(penalizes orientation)

(favors orientation)

̅̅𝑧

Entropy	𝑆	and	free	energy	𝐴	are	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒



Excluded Volume Effects
𝑧 = excluded volume parameter

vol. V

vol. 𝑧
probability that a particular particle 
overlaps another: 𝑣𝑧 = f, volume fraction
for N particles, number of configurations: 

𝑆 = 𝑘E𝑙𝑛Ω = −𝑘E𝑁𝑙𝑛[𝑣 1 − 𝑣𝑧/2 ]

change of entropy per unit volume: 𝑘E𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

(due to excluded volume)

Ω ≈
[𝑉(1 − 𝑣𝑧/2)]F

𝑁! ΛGF
factor of 2 
avoids double 
counting

consider dilute particles

≈  − 𝑘E 𝑉[𝑣𝑙𝑛𝑣 + 𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

add a particle

(ignore const.)
𝑁 = 𝑣𝑉

for small 𝑣 

≈ −
1
2
𝑘E𝑧𝑣5



Orientational Entropy 

𝐴I 𝜓 = −𝑇𝑆 = 𝜈𝑘E𝑇p𝜓 𝒖 𝑙𝑛[𝜓 𝒖 ] 𝑑𝑢5

(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	𝑡𝑜: 	𝑆 = −𝑘E𝑁∑J𝑃J 𝑙𝑛 𝑃J ) like in Shannon entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

𝐴5 𝜓 = I
5 𝜈

5𝑘E𝑇[∫∫𝜓 𝒖 𝜓 𝒖′ 𝛽(u’,u)𝑑𝑢5𝑑𝑢′5]

If excluded volume interactions are pair-wise additive:
(valid if concentration is not too high ~ 10% or so)

To find the distribution function 𝜓 𝒖  that minimizes the sum of 
these two free energy contributions, we must do calculus of 
variations using a Lagrange multiplier to maintain ∫𝜓 𝒖  𝑑𝑢5 = 1

(note that 𝐴I 𝜓  is a functional of	𝜓 𝒖 ) 𝜈 = #rods/vol. = N/V

𝐴5 =
I
5𝑘E𝑇 ̅̅𝑧𝜈5 ̅̅𝑧 is average over both 𝜓 𝒖 and	𝜓 𝒖′  

(penalizes orientation)

(favors orientation)

̅̅𝑧

Entropy	𝑆	and	free	energy	𝐴	are	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒



Onsager Nematic Potential 𝑉!"# 𝒖

• The distribution of orientations can, in principle, be computed 
theoretically from a nematic potential that expresses the influence of 
one rod's orientation on that of its neighbors.

• Onsager’s theory was derived for an ideal solution of long, perfectly 
stiff, hard rods interacting only by excluded-volume forces, at 
concentrations dilute enough that only pairwise interactions are 
significant.

• From the potential 𝑉!"# 𝒖 , one can obtain the rod orientation 
distribution function 𝝍 𝒖 , and hence the order parameter S, by a 
self-consistent calculation. 



Nematic Order
q

𝑆	 ≡
3
2
< 𝑐𝑜𝑠5 𝜃 > −

1
2

define nematic order parameter (scalar):

0 < S < 1

<?>	≡ 	∫? 𝜓 𝒖 𝑑𝑢5 = ∫6
57∫6

7? 𝜓 𝜃,𝜙 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙

𝒖	is	a	unit	vector, 𝒖 = (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑐𝑜𝑠𝜃)

𝜓 𝒖 d𝑢5 = probability that a rod’s orientation lies 
between 𝒖  and 𝒖 +d 𝒖

Note: S here is not entropy 
or structure factor

𝑢𝜃
𝜙

𝑛



Solution: Onsager Potential

𝑉OP2 𝒖 = 𝑘E𝑇𝜈 ̅𝑧 𝒖 = 	𝑘E𝑇𝜈 ∫𝜓 𝒖′  𝛽(u’,u) 𝑑𝑢′5

𝜈	= # rods/vol

𝜓 𝒖  = const exp[−𝑉OP2 𝒖 	/ 𝑘E𝑇] (Boltzmann principle)

(𝑐𝑜𝑛𝑠𝑡)QI=	∫ 𝑒QK)*+/S,T 𝑑𝑢5
(normalization const.)

Solve for 𝑉OP2 𝒖  and 𝜓 𝒖  simultaneously

𝐴5 𝜓 = I
5 𝜈

5𝑘E𝑇[∫∫𝜓 𝒖 𝜓 𝒖′ 𝛽(u’,u)𝑑𝑢5𝑑𝑢′5]Note: 

= U5 [∫𝜓 𝒖 𝑉OP2 𝒖 𝑑𝑢5]

∫𝜓 𝒖  𝑑𝑢5 = 1

𝑉OP2 𝒖 = 2𝜈𝑑𝐿5𝑘E𝑇 ∫𝜓 𝒖′ sin(u’,u)	𝑑𝑢′5
𝛽(u’,u) = 2𝑑𝐿5sin(u’,u)

(𝑖. 𝑒. , 𝐴5 𝜓 = −𝑇∆𝑆 = I
5
𝑘E𝑇 ̅̅𝑧𝜈5) 

average volume excluded per rod

Entropy	𝑆	and	free	energy	𝐴	are	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒



Solution to Onsager Theory
To simplify the problem, Onsager suggested using 
an approximate form for the solution:

𝜓 𝒖 =
𝛼

4𝜋 sinh 𝛼
cosh ( 𝛼𝒖 ? 𝒏)

where 𝒏 is the director, a unit vector pointing in the 
direction of mean orientation 

(the prefactor was chosen so that ∫𝜓 𝒖  𝑑𝑢5 = 1)

Insert this into 𝐴I 𝒖 + 𝐴5 𝒖  and minimize wrt a 

𝜃

𝜓

𝑐osh 𝑥 ≡
𝑒4 + 𝑒Q4

2
𝑠𝑖𝑛ℎ 𝑥 ≡

𝑒4 − 𝑒Q4

2

𝒖 ? 𝒏 = 𝑐𝑜𝑠𝜃



Orientational Entropy 

𝐴I 𝜓 = −𝑇𝑆 = 𝜈𝑘E𝑇p𝜓 𝒖 𝑙𝑛[𝜓 𝒖 ] 𝑑𝑢5

(𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	𝑡𝑜: 	𝑆 = −𝑘E𝑁∑J𝑃J 𝑙𝑛 𝑃J ) like in Shannon entropy

orientational free energy A and entropy S of a single rod (per unit volume V):

𝐴5 𝜓 = I
5 𝜈

5𝑘E𝑇[∫∫𝜓 𝒖 𝜓 𝒖′ 𝛽(u’,u)𝑑𝑢5𝑑𝑢′5]

If excluded volume interactions are pair-wise additive:
(valid if concentration is not too high ~ 10% or so)

To find the distribution function 𝜓 𝒖  that minimizes the sum of 
these two free energy contributions, we must do calculus of 
variations using a Lagrange multiplier to maintain ∫𝜓 𝒖  𝑑𝑢5 = 1

(note that 𝐴I 𝜓  is a functional of	𝜓 𝒖 ) 𝜈 = #rods/vol. = N/V

𝐴5 =
I
5𝑘E𝑇 ̅̅𝑧𝜈5 ̅̅𝑧 is average over both 𝜓 𝒖 and	𝜓 𝒖′  

(penalizes orientation)

(favors orientation)

̅̅𝑧

Entropy	𝑆	and	free	energy	𝐴	are	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡	𝑣𝑜𝑙𝑢𝑚𝑒



Order Parameter
𝑆	 ≡

3
2
p𝜓 𝒖 𝒖 ? 𝒏 𝟐 −

1
3
𝑑𝑢5 =

3
2
< 𝑐𝑜𝑠5 𝜃 > −

1
2

𝑆	 ≡ 𝜋p𝜓 𝜃 3𝑐𝑜𝑠5 𝜃 − 1 𝑠𝑖𝑛𝜃 𝑑𝜃

using uniaxial symmetry:

𝒏 is a unit vector point in direction of average nematic orientation

𝒏 𝑢
𝜃

<?>	≡ 	∫? 𝜓 𝒖 𝑑𝑢5 = ∫6
57∫6

7? 𝜓 𝜃,𝜙 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙

𝜓 𝒖 d𝑢5 = probability that a rod’s orientation lies 
between 𝒖  and 𝒖 +d 𝒖



for small 𝜈, only one soln:  S = 0 (a = 0; isotropic)

for larger 𝜈 (between 𝜈1* and 𝜈2*, S = 0 (a = 0) and 
S > 0 (a > 0) are solutions

As 𝜈 increases, the lowest free energy state switches from 
S = 0 to S ≠ 0 state.   

Free Energy Solution

n1*

𝐴! 𝜓 = 𝜈𝑘"𝑇3𝜓 𝒖 𝑙𝑛[𝜓 𝒖 ] 𝑑𝑢#

𝐴# 𝜓 = !
#
𝜈#𝑘"𝑇[∫∫𝜓 𝒖 𝜓 𝒖′ 𝛽(u’,u)𝑑𝑢#𝑑𝑢′#]

𝜓 𝒖 =
𝛼

4𝜋 sinh 𝛼
cosh ( 𝛼𝒖 H 𝒏)

n2*



Free Energy Solution

• For low concentrations 𝝂, the only solution is the trivial one, 𝜓 = 
const. = 1/4 , corresponding to the isotropic state.

• For a high enough value of 𝜈, there is in addition to the isotropic 
solution a stable nontrivial solution corresponding to a nematic 
state with S > 0.

• As 𝜈 increases, the lowest free-energy state changes from the 
isotropic to the nematic.

• Onsager's potential is purely entropic; hence for a given rod diameter 
and length, the transition to the liquid crystalline state occurs at a 
concentration that is independent of the temperature T.

• And since the Onsager potential applies to a two-component system 
(rods + solvent), there is a biphasic range of concentrations over 
which the isotropic and nematic phases coexist.



Phase Separation

𝐴6 𝜈 = 𝜈𝑘E𝑇(ln(𝜈) 	− 1)
Add free energy from translational entropy 

𝐴 𝜓, 𝜈 = 𝐴6 𝜈 + 𝐴I 𝜓, 𝜈 + 𝐴5 𝜓, 𝜈

min. at am = 0 = S
   (isotropic phase)

min. at am ≠ 0
(nematic phase)

2nd min. 
appears

1st  min. 
disappears

from Doi and Edwards, The 
Theory of Polymer Dynamics

Minimize free energy with respect to compositional variation 
Drive to reduce 𝐴5 comes at the cost of increasing 𝐴Iand 𝐴6

Entropy can drive 
both orientation 
and phase 
separation

nematic 
phase

isotropic 
phase

(sum over both 
phases)

sample overall concentration

double tangent construction



Nematic Order

𝜙𝜙W 𝜙E

S

1

biphasic

to describe orientational interactions, we need a “nematic potential” 𝑉!"# 𝒖



Minimized Onsager Free Energy

Note that there are two minima for 𝜈1* < 𝜈 < 𝜈2
*

This means that there is two-phase equilibrium

Isotropic phase becomes unstable at 𝜈 = 𝜈*= 𝜈2
*

𝜈W =
4.25
𝑑𝐿5

𝜈E =
5.27
𝑑𝐿5 𝜈∗ =

5.1
𝑑𝐿5

𝜙∗ = 𝜈∗
𝜋𝑑5𝐿
4

≈ 4
𝑑
𝐿

𝜙W = 𝜈W
𝜋𝑑5𝐿
4

≈ 3.3
𝑑
𝐿

𝜙E = 4.1
𝑑
𝐿



• shows the values of 𝝓𝑨 and 𝝓𝑩 , the volume fractions of molecules 
corresponding to the boundaries of the biphasic region.

• for PBLG molecules, 𝜙& and 𝜙! decrease roughly as 1/L with increasing 
molecular length, in agreement with the Onager theory, up to a length of around 
600 Å, corresponding to about 400 monomers.

• For longer molecules, 𝜙& and 𝜙! are roughly independent of molecular length, 
presumably because the longer molecules no longer behave as rigid rods

𝜙!

𝜙"

these predictions of the Onsager 
theory for the dependence of S on 
𝜈 seem to be in qualitative 
agreement with experimental 
measurements for semirigid 
molecules such as poly(y-benzyl-
1-glutamate) (PBLG).

𝜙W = 𝜈W
𝜋𝑑5𝐿
4

≈ 3.3
𝑑
𝐿

𝜙E = 4.1
𝑑
𝐿



• shows the values of 𝝓𝑨 and 𝝓𝑩 , the volume fractions of molecules 
corresponding to the boundaries of the biphasic region.

• for PBLG molecules, 𝜙& and 𝜙! decrease roughly as 1/L with increasing 
molecular length, in agreement with the Onager theory, up to a length of around 
600 Å, corresponding to about 400 monomers.

• For longer molecules, 𝜙& and 𝜙! are roughly independent of molecular length, 
presumably because the longer molecules no longer behave as rigid rods

• The Onsager theory and its extensions are valid only when the concentration is 
low enough that pairwise excluded-volume interactions are the dominant ones. 
Thus, these theories are not likely to apply to solvent-free bulk, or thermotropic, 
liquid crystalline phases, for which there are likely to be complex packing 
interactions and anisotropic energetic interactions, such as those produced by 
van der Waals forces.

𝜙!

𝜙"

these predictions of the Onsager 
theory for the dependence of S on 
𝜈 seem to be in qualitative 
agreement with experimental 
measurements for semirigid 
molecules such as poly(y-benzyl-
1-glutamate) (PBLG).



PBLG phase behavior
(poly-gamma-benzyl-L-glutamate)

Why doesn’t the volume 
fraction of nematic keep 
getting smaller?

nematic

isotropic

(polymer length)

Onsager theory

the molecules are not 
completely rigid!perfectly rigid molecule



https://www.youtube.com/watch?v=chS8dpG
B0E0&ab_channel=TEDxTalks

Glotzer Tedx talk on entropy 2012

https://www.youtube.com/watch?v=chS8dpGB0E0&ab_channel=TEDxTalks
https://www.youtube.com/watch?v=chS8dpGB0E0&ab_channel=TEDxTalks


Glotzer Kavli talk on entropy 2019

https://www.youtube.com/watch?v=JW1L_vZ6K1M

https://www.youtube.com/watch?v=JW1L_vZ6K1M


Electrostatic force

Reference text:  
Colloidal Systems, Darrell Velegol

Colloidal Science and Nanoscale Engineering Slides, Orlin Velev
Intermolecular and surface forces, Jacob Israelachvili



• Electrical double layer

• Poisson-Boltzmann equation
• Poisson equation, relate potential change to charge density
• Boltzmann equation, relate ion distribution to potential energy
• Poisson-Boltzmann: self-consistent description of electrostatic potential inside EDL, given bulk ion concentration (C∞), introduce Debye length (𝛋)

• Debye-Huckel
• For small surface potential and binary electrolyte, PB simplifies to Debye-Huckel, which give exponential decay of electrostatic potential (Ψ(x)) 

from surface potential (Ψ0) inside EDL with characteristic length (𝛋-1)
• Debye-Huckel (Ψ(x)) solutions for 1 plate, 1 sphere, between 2 plates

• Surface charge density (ρs) for 1 plate
• Electroneutrality gives relation between (ρs) and (Ψ0)
• Differentiate Boltzmann and use PB equation to relate total ion concentration at surface of 1 pate (C0) to (C∞) and (ρs)
• Grahame equation, relate (ρs) to (Ψ0) and (C∞) 

• In binary electrolyte, example of Grahame used to calculate (C0) from (Ψ0) and (C∞) with fixed (ρs)
• For low (Ψ0) and binary electrolyte, Grahame simplifies to (ρs) = ε𝛋(Ψ0) 

• Differentiate Boltzmann and use PB equation also relates individual ion concentration (Ci(x)) to electrostatic potential (Ψ(x))
• For binary electrolyte, this simplifies to Gouy-Chapman’s solution to (Ψ(x)), allow us to plot EDL: (Ci(x)), (Ci0(x)), (Ψ(x)), (Ψ0), given (ρs) and (C∞)
• For low (Ψ0) and binary electrolyte, Gouy-Chapman simplifies to Debye-Huckel, completing the full circle

• Surface charge density (ρs) using Debye-Huckel (low (Ψ0) and binary electrolyte assumed) 
• Direct plugging Debye-Huckel into electroneutrality for 1 plate will also give simplified Grahame: (ρs) = ε𝛋(Ψ0)
• Surface charge density (ρs) using Debye-Huckel for 1 sphere, for 2 plates: for finite (ρs), (Ψ0) → ∞ as gap → 0

• Electrostatic force per area (fes) between 2 plates
• Origin (contact value theorem): increased ionic concentration in gap → increased osmotic pressure (𝜋) exerted on plates
• Navier-Stokes equation for static fluid reduces to balance of pressure and electrical forces on the fluid
• Navier-Stokes + Poisson equations relates (𝜋) to electric field (dΨ(x)/dx)
• Navier-Stokes + Poisson + Boltzmann equations solve (𝜋) as a function of (Ψ(x)) and (C∞)
• For low (Ψ0) and binary electrolyte, solution simplifies to (𝜋) ∼ ε𝛋(Ψ(x))2
• Plug in Debye-Huckel for 2 plates for (Ψ(x)) to obtain exponential decay of electrostatic force per area (fes) with characteristic length (𝛋-1)
• Integrate (fes) for electrostatic energy per unit area (Ves) between 2 plates 

• Electrostatic energy (Φes) between 2 spheres and the Derjaguin approximation
• Apply the Derjaguin approximation to obtain the electrostatic energy (Φes) between 2 spheres
• Differentiate to calculate the electrostatic force (Fes) between 2 spheres



Without electrolyte



With electrolyte

C+ = C- = C∞

C+ 

C- 



Electrical double layer (EDL) 

• What is “double” about the electrical double layer around a particle? 
There are two charged layers: 1) a fixed layer of charges on the 
particle surface, and 2) a fluid layer touching the particle surface, 
which contains oppositely-charged “counter-ions”. Together, the net 
sum of the charges on the particle plus the charges in the fluid layer 
add to zero, meaning they are together electroneutral. 

• The primary quantities that we want to know about the EDL are the 
electrical potential (Ψ) on and around the particle, and sometimes 
the spatial distribution of ions in the fluid layer. 



Electrical double layer (EDL) 



Electrical double layer (EDL) 

• In aqueous solutions the particle surfaces almost always become 
charged. If the charge group is a carboxyl (-COOH), then when the pH 
of the fluid is greater than the pKa of the acid group – in this case, 
roughly 4 – the proton will dissociate, leaving a negatively-charged 
COO- group bonded to the surface. 

• For silica particles, the surface groups first become silanol groups (-
Si-OH) in water, and then the protons dissociates to give negatively-
charged Si-O- groups at the surface. 

• We often call this the “fixed charged layer” 
• Colloid scientists frequently also refer to a Stern layer, which is an 

additional layer of species bound directly near the fixed layer of 
charges. 



Electrical double layer (EDL) 

• The charges on the particle arise due to the solvating action of the 
fluid on the particle. In turn the ions in the solvent re-distribute their 
positions in solution so that they form a layer – often only 
nanometers thick – that counter-balances the fixed charges on the 
particles. 



Electrical double layer (EDL) 



Electrical double layer (EDL) 



Electrical double layer (EDL) 



• Contrary to intuition, the origin of the repulsive force between two similarly 
charged surfaces in a solvent containing counterions and/or added 
electrolyte ions is entropic (osmotic), not electrostatic. 

• What maintains the diffuse double-layer is the repulsive osmotic pressure 
between the counterions which forces them away from the surface and from 
each other so as to increase their configurational entropy. 

Electrical double layer (EDL) 



Electrical double layer (EDL) 



The Poisson-Boltzmann (PB) equation 

• The PB equation is built on the Poisson equation of electrostatics and 
the Boltzmann equation of statistical mechanics. 

• Poisson equation 
• Maxwell equations 

• For the “static case” – which in colloid science effectively means 
when the frequency is less than 109 s-1 – we can ignore the dynamic 
parts of the Maxwell equation, the ∂/∂t parts, and simplify the full 
Maxwell equations. 



The Poisson equation 

• define an “electrical potential” (Ψ, in V or mV), which is the voltage at 
any position in the system. 

• the electric field (E)  is defined as 
• The voltage arises due to charge groups on the particle, and changes 

through the EDL. For static systems the electric potential can be very 
accurately-described by a single scalar equation called “the Poisson 
equation”:

• This partial differential equation predicts the electrical potential (Ψ, 
in V or mV) at any position (x,y,z), when the volumetric charge 
density (ρe, in C/m3) is known everywhere. 



The Poisson equation 

• The permittivity (ε) provides a measure of how unwell a material 
“permits” an electric field to penetrate through it. Vacuum has a 
value of ε = ε0 = 8.854x10-12 C2/N-m2, and readily permits an electric 
field through it; water has a value of about 80 ε0 = 7.1x10-10 C2/N-m2, 
which counteracts an applied field. 



The Poisson equation 

• How do we know the volumetric charge density ρe? 
• By adding up the charge on each of the N ion types in the system, we 

know almost be definition that at any local position, 

• We expect that near to a negative particle surface we will have a 
higher concentration of positive counter-ions in solution, and fewer 
co-ions. But how do we quantify those concentrations, and thus 
evaluate the charge density? 

Volumetric charge density

Concentration of ion type i

Elementary charge
Valence



The Boltzmann equation 

• The Boltzmann distribution predicts quantitatively what fraction of 
the time an entity – whether it is a stone, a gas molecule, or a 
colloidal particle – will spend in a local position of any given volume, 
given the energy at that local position. 

• For example, we know that gravitational potential energy is given by 
mgh, and assuming gravitational constant (g) is constant and the 
mass of the oxygen molecule (m) is identically the same, the higher 
value of h increases the energy, meaning higher altitude will give you 
less oxygen.

• In terms of concentration of ions Ci, the Boltzmann equation says for 
ion type i, that 



C∞

The Boltzmann equation 



The Poisson-Boltzmann (PB) equation 

• The energy for an ion due to an electric field is Ei = zi e Ψ, where in 
this case the potential is defined to be zero far from the particles, in 
the bulk solution (Ψ∞ = 0). 

• This expression for the ion’s energy is an approximation because it 
neglects, for instance, the VDW attraction between the ions. But 
especially for univalent ions, the approximation works well, and 
importantly, it gives us an analytical result that we can use to think 
through EDL problems. 

• inserting the Boltzmann expression for concentration into the 
expression for charge density ρe, and then the expression for charge 
density into the Poisson equation, we obtain the full Poisson-
Boltzmann equation: 



The Poisson-Boltzmann (PB) equation 

• Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or 
Ca(SO4) (2:2),

• PB becomes                                               where

• The very famous parameter 𝛋-1 is called “the Debye length”. It plays a 
key role in determining the electrostatic potential near a surface. 



C

0 0

surface charge density (ρs [=] C/m2)

the Debye length



0

the Debye length



the Debye length



the Debye length



The Poisson-Boltzmann (PB) equation 

• Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or 
Ca(SO4) (2:2),

• PB becomes                                               where

• The very famous parameter 𝛋-1 is called “the Debye length”. It plays a 
key role in determining the electrostatic potential near a surface. 



Debye-Huckel results for electric potential 

• Let’s look at the PB equation near to a charged plate, using only the x 
dimension, where x = 0 at the surface of the plate and extends to 
infinity. 

• Furthermore, we will make an approximation that Ψ is small, less 
than kT/e = 25.7 mV at room temperature. 

• For small values of w, sinh (w) = w + w3/6 + ... ≈ w, and so the PB 
equation can be approximated as 

• In order to solve the PB equation we need two boundary conditions. 
Two common boundary conditions are 



Debye-Huckel results for electric potential 

• general solution: 
• Debye-Huckel equation for electric potential near to a single flat 

plate (upon applying the boundary conditions):



Electrostatic forces

• The electrical potential decays away from a flat surface at a rate 
given roughly by the Debye-Huckel equation: 

• Typical magnitudes of the surface potential (Ψ) are 10 to 150 mV, 
and can be negative or positive. Since these potentials arise due 
to the surface charges, the relationship between the surface 
charge density (units C/m2) and the surface potential is: 

Surface potential Distance from the surface

Electrical permittivity

From Lecture 4:



Debye-Huckel results for electric potential 

• general solution: 
• Debye-Huckel equation for electric potential near to a single flat 

plate (upon applying the boundary conditions):

• At the plate surface the electric potential is Ψ0, while just a few 
Debye lengths away, the electric potential decays to nearly zero. 

• Example: 



Debye-Huckel results for electric potential 

• 2nd case: let’s look now at the potential around a spherical particle of 
radius (a). For spherical coordinates 

• the Debye-Huckel equation for a sphere is 

• In fact, if we have a large sphere, so that if when we define x ≡ r - a 
we see x/a ≪ 1, this reduce to  

“flat earth approximation” 



Debye-Huckel results for electric potential 

• 3rd case: the electric potential between two charged plates with 
boundary conditions

• This gives:



Surface charge density
• Oftentimes we want to predict the surface charge density (ρs [=] 

C/m2), knowing the surface potential, or vice versa.
• a surface plus its EDL form an electroneutral system. Thus, the 

charges at the surface and the charges in the bulk fluid balance. This 
can be written mathematically for a flat plate as

• This equation says that the surface charges must be balanced by the 
charges in the fluid from near the plate to infinity. A rearrangement 
of the Poisson equation tells us 

integrate



Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that
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Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that
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The Poisson equation 

• define an “electrical potential” (Ψ, in V or mV), which is the voltage at 
any position in the system. 

• the electric field (E)  is defined as 
• The voltage arises due to charge groups on the particle, and changes 

through the EDL. For static systems the electric potential can be very 
accurately-described by a single scalar equation called “the Poisson 
equation”:

• This partial differential equation predicts the electrical potential (Ψ, 
in V or mV) at any position (x,y,z), when the volumetric charge 
density (ρe, in C/m3) is known everywhere. 



Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that
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Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that

• Turning attention to the ionic concentration, differentiating the 
Boltzmann distribution (summing over all species) yields: 

𝑑 ∑$%𝐶$
𝑑𝑥

= −J
$

%
𝑧$𝑒𝐶$&
𝑘𝑇

𝑒𝑥𝑝 −
𝑧$𝑒Ψ
𝑘𝑇

𝑑Ψ
𝑑𝑥

=
𝜀
𝑘𝑇

𝑑'Ψ
𝑑𝑥'

𝑑Ψ
𝑑𝑥

𝐸6 = −
𝑑Ψ
𝑑𝑥 6

𝜌[ = 𝜀
𝑑Ψ
𝑑𝑥 4→]

−
𝑑Ψ
𝑑𝑥 4^6

= 𝜀 0 −
𝑑Ψ
𝑑𝑥 6

= −𝜀
𝑑Ψ
𝑑𝑥 6

= 𝜀𝐸6



The Boltzmann equation 

• The Boltzmann distribution predicts quantitatively what fraction of 
the time an entity – whether it is a stone, a gas molecule, or a 
colloidal particle – will spend in a local position of any given volume, 
given the energy at that local position. 

• For example, we know that gravitational potential energy is given by 
mgh, and assuming gravitational constant (g) is constant and the 
mass of the oxygen molecule (m) is identically the same, the higher 
value of h increases the energy, meaning higher altitude will give you 
less oxygen.

• In terms of concentration of ions, the Boltzmann equation says for ion 
type i, that 



Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that

• Turning attention to the ionic concentration, differentiating the 
Boltzmann distribution (summing over all species) yields: 
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Surface charge density
• Recall the electric field at the surface is

• The condition of electroneutrality implies that

• Turning attention to the ionic concentration, differentiating the 
Boltzmann distribution (summing over all species) yields: 
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The Poisson-Boltzmann (PB) equation 

• The energy for an ion due to an electric field is Ei = zi e Ψ, where in 
this case the potential is defined to be zero far from the particles, in 
the bulk solution. 

• This expression for the ion’s energy is an approximation because it 
neglects, for instance, the VDW attraction between the ions. But 
especially for univalent ions, the approximation works well, and 
importantly, it gives us an analytical result that we can use to think 
through EDL problems. 

• inserting the Boltzmann expression for concentration into the 
expression for charge density, and then the expression for charge 
density into the Poisson equation, we obtain the full Poisson-
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Surface charge density
• To find the relation between the surface charge density ρs and the 

surface potential Ψ0, we invoke the Boltzmann distribution again:
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The Boltzmann equation 

• The Boltzmann distribution predicts quantitatively what fraction of 
the time an entity – whether it is a stone, a gas molecule, or a 
colloidal particle – will spend in a local position of any given volume, 
given the energy at that local position. 

• For example, we know that gravitational potential energy is given by 
mgh, and assuming gravitational constant (g) is constant and the 
mass of the oxygen molecule (m) is identically the same, the higher 
value of h increases the energy, meaning higher altitude will give you 
less oxygen.

• In terms of concentration of ions, the Boltzmann equation says for ion 
type i, that 
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such as NaCl against a negatively 
charged surface of ρs = -0.2 C m-2:



Surface charge density
• To find the relation between the surface charge density ρs and the 

surface potential Ψ0, we invoke the Boltzmann distribution again:

• To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z ≡ |zi| 
= 1 and Ci∞ = [Na+]∞ = [Cl-]∞ = [NaCl]∞ = C∞

𝜌,' = 2𝜀𝑘𝑇𝐶& 𝑒𝑥𝑝
𝑍𝑒Ψ+
𝑘𝑇

+ 𝑒𝑥𝑝
−𝑍𝑒Ψ+
𝑘𝑇

− 2

𝜌,' = 2𝜀𝑘𝑇 J
$

%

𝐶$+ −J
$

%

𝐶$& = 2𝜀𝑘𝑇 J
$

%

𝐶$&𝑒𝑥𝑝 −
𝑧$𝑒Ψ+
𝑘𝑇 −J

$

%

𝐶$&

Sometimes referred to as 
the Grahame equation

For an aqueous 1:1 electrolyte 
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• Note that for no electrolyte we obtain an infinite 
potential, which is unrealistic; a pure liquid such as 
water will always contain some dissociated ions. 

If C∞ → 0, Ψ0 needs to approach ∞ in order 
to maintain constant charge density ρs
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• Note that for no electrolyte we obtain an infinite 
potential, which is unrealistic; a pure liquid such as 
water will always contain some dissociated ions. 

• At constant surface charge density the surface 
potential falls progressively as the electrolyte 
concentration rises. 
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such as NaCl against a negatively 
charged surface of ρs = -0.2 C m-2:

From the tabulated values of Ψ0 we can determine the ionic 
concentrations at the surface using Boltzmann distribution:
• in 10-7 M 1:1 electrolyte, where Ψ0 = -477.1 mV, the counterion 

concentration at the surface is 11.64 M and 10-15 M for the co-
ions. (total surface ion conc. ~11.64 M ≈ excess ion conc.)

• At 1 M, Ψ0 = -67 mV, the surface conc. are 13.57 M and 0.07 M 
for counter- and co-ions. (total ~ 13.64 M, excess ~11.64M)
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• To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z ≡ |zi| 
= 1 and Ci∞ = [Na+]∞ = [Cl-]∞ = [NaCl]∞ = C∞

𝜌,' = 2𝜀𝑘𝑇𝐶& 𝑒𝑥𝑝
𝑍𝑒Ψ+
𝑘𝑇

+ 𝑒𝑥𝑝
−𝑍𝑒Ψ+
𝑘𝑇

− 2

𝜌,' = 2𝜀𝑘𝑇 J
$

%

𝐶$+ −J
$

%

𝐶$& = 2𝜀𝑘𝑇 J
$

%

𝐶$&𝑒𝑥𝑝 −
𝑧$𝑒Ψ+
𝑘𝑇 −J

$

%

𝐶$&

Sometimes referred to as 
the Grahame equation



Surface charge density
• To find the relation between the surface charge density ρs and the 

surface potential Ψ0, we invoke the Boltzmann distribution again:

• To make the math simpler, let’s consider a Z:Z salt, say NaCl if Z ≡ |zi| 
= 1 and Ci∞ = [Na+]∞ = [Cl-]∞ = [NaCl]∞ = C∞

• This can be factored into

𝜌,' = 2𝜀𝑘𝑇𝐶& 𝑒𝑥𝑝
𝑍𝑒Ψ+
𝑘𝑇

+ 𝑒𝑥𝑝
−𝑍𝑒Ψ+
𝑘𝑇

− 2

𝜌,' = 2𝜀𝑘𝑇𝐶& 𝑒𝑥𝑝
𝑍𝑒Ψ+
2𝑘𝑇

− 𝑒𝑥𝑝
−𝑍𝑒Ψ+
2𝑘𝑇

'

𝜌, = 2𝜀𝑘𝑇𝐶& 𝑒𝑥𝑝
𝑍𝑒Ψ+
2𝑘𝑇 − 𝑒𝑥𝑝

−𝑍𝑒Ψ+
2𝑘𝑇

In other words, 
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$
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$

%

𝐶$&𝑒𝑥𝑝 −
𝑧$𝑒Ψ+
𝑘𝑇 −J

$

%

𝐶$&

Sometimes referred to as 
the Grahame equation



Surface charge density
• For low surface potentials (Ψ0 < 25 mV), use Taylor series

𝜌, = 2𝜀𝑘𝑇𝐶& 𝑒𝑥𝑝
𝑍𝑒Ψ+
2𝑘𝑇 − 𝑒𝑥𝑝

−𝑍𝑒Ψ+
2𝑘𝑇

𝜌, = 2𝜀𝑘𝑇𝐶& 1 +
𝑍𝑒Ψ+
2𝑘𝑇

+⋯ − 1 −
𝑍𝑒Ψ+
2𝑘𝑇

+⋯

𝜌, ≈ 2𝜀𝑘𝑇𝐶&
𝑍𝑒Ψ+
𝑘𝑇 =

2𝜀𝐶&
𝑘𝑇 𝑍𝑒Ψ+



Surface charge density
• For low surface potentials (Ψ0 < 25 mV), use Taylor series

• For the general case (where Z:Z is not a requirement, say CaCl2 or 
mixtures of NaCl and CaCl2) at low surface potentials (Ψ0 < 25 mV), 
the Grahame equation simplifies to

𝜌, = 2𝜀𝑘𝑇𝐶& 1 +
𝑍𝑒Ψ+
2𝑘𝑇

+⋯ − 1 −
𝑍𝑒Ψ+
2𝑘𝑇

+⋯

𝜌, ≈ 2𝜀𝑘𝑇𝐶&
𝑍𝑒Ψ+
𝑘𝑇 =

2𝜀𝐶&
𝑘𝑇 𝑍𝑒Ψ+

𝜌, = 𝜀 J
$

%
𝑧$'𝑒'𝐶$&
𝜀𝑘𝑇

Ψ+



Surface charge density
• For low surface potentials (Ψ0 < 25 mV), use Taylor series

• For the general case (where Z:Z is not a requirement, say CaCl2 or 
mixtures of NaCl and CaCl2) at low surface potentials (Ψ0 < 25 mV), 
the Grahame equation simplifies to

𝜌, = 2𝜀𝑘𝑇𝐶& 1 +
𝑍𝑒Ψ+
2𝑘𝑇

+⋯ − 1 −
𝑍𝑒Ψ+
2𝑘𝑇

+⋯

𝜌, ≈ 2𝜀𝑘𝑇𝐶&
𝑍𝑒Ψ+
𝑘𝑇 =

2𝜀𝐶&
𝑘𝑇 𝑍𝑒Ψ+

𝜌, = 𝜀 J
$

%
𝑧$'𝑒'𝐶$&
𝜀𝑘𝑇

Ψ+ Check for yourself that these two equations 
are indeed equivalent for Z:Z salts like NaCl



Surface charge density
• For low surface potentials (Ψ0 < 25 mV), use Taylor series

• For the general case (where Z:Z is not a requirement, say CaCl2 or 
mixtures of NaCl and CaCl2) at low surface potentials (Ψ0 < 25 mV), 
the Grahame equation simplifies to

• Which can be rewritten as:

𝜌, = 2𝜀𝑘𝑇𝐶& 1 +
𝑍𝑒Ψ+
2𝑘𝑇

+⋯ − 1 −
𝑍𝑒Ψ+
2𝑘𝑇

+⋯

𝜌, ≈ 2𝜀𝑘𝑇𝐶&
𝑍𝑒Ψ+
𝑘𝑇 =

2𝜀𝐶&
𝑘𝑇 𝑍𝑒Ψ+

𝜌, = 𝜀 J
$

%
𝑧$'𝑒'𝐶$&
𝜀𝑘𝑇

Ψ+

𝜌, = 𝜀𝜅Ψ+, where κ ≡ ∑$%
-(%"%.($
/01

And we recover the famous Debye length 𝛋-1



The Poisson-Boltzmann (PB) equation 

• Assuming a symmetric and binary Z:Z electrolyte, like NaCl (1:1) or 
Ca(SO4) (2:2),

• PB becomes                                               where

• The very famous parameter 𝛋-1 is called “the Debye length”. It plays a 
key role in determining the electrostatic potential near a surface. 

𝜌, = 𝜀𝜅Ψ+, where κ ≡ ∑$%
-(%"%.($
/01

Check for yourself that these two Debye length 𝛋-1 are indeed the same for Z:Z electrolytes



Surface charge density
• For low surface potentials (Ψ0 < 25 mV), use Taylor series

• For the general case (where Z:Z is not a requirement, say CaCl2 or 
mixtures of NaCl and CaCl2) at low surface potentials (Ψ0 < 25 mV), 
the Grahame equation simplifies to

• Which can be rewritten as:

𝜌, = 2𝜀𝑘𝑇𝐶& 1 +
𝑍𝑒Ψ+
2𝑘𝑇

+⋯ − 1 −
𝑍𝑒Ψ+
2𝑘𝑇

+⋯

𝜌, ≈ 2𝜀𝑘𝑇𝐶&
𝑍𝑒Ψ+
𝑘𝑇 =

2𝜀𝐶&
𝑘𝑇 𝑍𝑒Ψ+

𝜌, = 𝜀 J
$

%
𝑧$'𝑒'𝐶$&
𝜀𝑘𝑇

Ψ+
And we recover the famous Debye length 𝛋-1

𝜌, = 𝜀𝜅Ψ+, where κ ≡ ∑$%
-(%"%.($
/01



Electrostatic forces

• The electrical potential decays away from a flat surface at a rate 
given roughly by the Debye-Huckel equation: 

• Typical magnitudes of the surface potential (Ψ) are 10 to 150 mV, 
and can be negative or positive. Since these potentials arise due 
to the surface charges, the relationship between the surface 
charge density (units C/m2) and the surface potential is: 

Surface potential Distance from the surface

Electrical permittivity

From Lecture 4:
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