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Macroscopic Thermodynamics

Internal energy
For systems whose natural variables are T and V (volume), /
entropy

Helmholtz free energy: A=U-TS“
(dA = dU — SdT —TdS)

First Law of Thermodynamics: dU =TdS — pdV

\ !

heat flow  work

These two imply:  dA = —=S5dT — pdV

multi-component system: G = Gibbs free energy
_ (0G
Hj = (a_m)

dA = —SdT — pdV + Z pidN; p;j = chemical potential of j
J

T,p,Ng,k*]

Gibbs freeenergy: G =H —TS enthalpy: H = U + pV
G=U—-TS+pV=A+pV

More detail: McQuarrie: Statistical Mechanics, Doi: Soft Matter Physics”



Microscopic Thermodynamics

E;

Boltzmann distribution: p; « exp(— k—T) pj = prob.of state j

Boltzmann distribution is a special case of a Poisson distribution

example: randomly divide a long line into a huge
number of segments

In the limit of large number of cuts, the dlstrlbution of line segment lengths is

2 p(L) « exp(———) normalization constant
j

-1 <L>
. —E; E
T opi= e ) Tew () = exp(—L )>a
B
E sum is over all states, including

Q= partition function, Q= 2 eXp(kBT) ones with same energy (i.e.,

degenerate states)

connection to macroscoplc thermodynamics: A = —kgT InQ



Application: Metropolis Monte Carlo Simulation

We wish to obtain thermodynamic averages of properties of a system, such as a
molecular system, with a great many microstates, too many to average over all of
them. So, we need to sample these microstates fairly, i.e., weighted by their
contribution to free energy.

So, we pick a starting state, S, and choose a possible re-arrangement of this state
to slightly different State S, randomly out of a total of N possible re-arrangements.

E; = energy of State S;;i=1, 2
If E; < E4 transition to state S, from Sy, with probability unity,
if E; > E4 transition to state S, from S, with probability exp [-(E> — E4)/kgT]
where we use a random number to decide if to transition. If we do not transition,

the system is kept in State 1 for that step of the simulation.

We then draw randomly a new State S, out of the N possibilities and repeat.



Application: Metropolis Monte Carlo Simulation

If for any State i, there are always the same number N possible new states that
can be sampled, then in a long run, any state i will be sampled with frequency
equal to its Boltzmann weight:

Ej
pi = exp(— -

)/ Y, exp (%)

This is the proper thermodynamic weight that this state should receive in the
thermodynamic ensemble. Thus, any property averaged over the sampled states
will converge to its thermodynamic average. E.g., E =% ;p; E;



Non-Interacting Particles

E.
E;= 0, for every state j 0= zexp (k f) = N = No.of states
B

Jj=
How many ways are there of placmg a single particle in 3D
space?

7 A = lattice spacing (or
S “deBroglie wavelength”)
There are V/A3
places to put a single
particle
VN/A3N

ordered ways of placing N
particles, allowing overlap
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number of ways of
ordering the N particles: N!
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Particle-Wave Dualism

Prof. Louis De Broglie 1923

A dB — h / p All particles are waves!

AdB = de Broglie Wavelength adding these ... results in this

h = Planck’s Constant
6.63 X 1034 Joule'second

p = momentum of particle
= mass X velocity

E=p2[2m
m — particle mass

=%

E= (h/A)2/2m

http://physics.weber.edu/carroll/honors/duality.htm






Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed

A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx:  In(N!) = NInN — N = NInN (N large)

v=N/V=

N
A/kgT /ks n Nin(v) + const number density

V

A/(VkgT) = vin(v) + const Pressure P = vkpT



Non-Interacting Particles
(Generalization 1: non-uniform concentration)

A/kgT = =S/kg = NIn(v) + const v =N/V=
number density

v(x)]

(%))

A(x)/(VkgT) = v(x)In[v(x)] + const = p(x)In|
X = position vector

vo = reference concentration; A is then
free energy relative to reference state

example: consider the reference state to be one of uniform
concentration v,. Relative to this, a non-uniform
concentration has free energy:

A =S
kpT kg

The integral is
— f vin(v/vy)dV over physical
v space




Non-Interacting Particles
(Generalization 2: multiple species)

N v=N/V=
A/kgT = —S/kg= Nin (7)= Nin(v) + const  pnumber density
(uniform

generalize: A/(kgT) = z N; In(v;) + const concentration)
l

consider the reference state to be one in which each
particle type is separated from the others at a uniform
concentration vy = );; v; Relative to this, free energy is:

kl;;T = z N; In(v;) — z N; In(vy)= z N; In(v; /vy)

A _ S _y oy in(x;) *i=vilX;v; =mole fraction of i
VkgT  Vkpg Lot l ) L
Ildeal mixing” entropy




Non-Interacting Particles
(Generalization 3: non-uniform probability
distribution)

A/kgT = -S/kg = z N; In(P;) N; =number of particles in state i

P; =probability (or fraction of times)
=N P,In(P) that particle is in state i = N; /N

Maximum entropy : N = total number of particles

(equal a priori probability of each state)

N _ z P In(P,) = Shannon entropy (per
: particle) from mformatlon

Py theory

0

high Sh t | Claude Shannon,
19 annon entropy means I0W Univ. of Mich. grad,

information content, and vice versa born in Petoskey, Ml
1010123

“Information content of the known universe:”



Non-Interacting Particles
(Generalization 4: non-uniform distribution in
orientation space)

OX %T

anisotropic distribution, ¥ (8)

isotropic In 3D space, Y(0,¢$)d0d¢ =

1 = . .
. . robability orientation angles are
3D isotropic Po(£2) = Yo (60, @) = 41 Eetween g and 6+d6 andg

between ¢ and ¢p+d¢

A 27
e j jwlnap/wo)sm 655 =[, in(p/po)de

dQ = du?

reference state: uniform orientation distribution




(Generalization 5: densely concentrated particles
& extension to Flory-Huggins theory)

Helmholtz free energy of purely entropic system: A = =15
A= —kgT InQ Q= partition function

: : _ [TvNi Un
Interacting particles:  Q = — 5y J ) exp[—%]
l i B

Integral is over reduced coordinates that each vary from 0 to 1

[1(VNi/N;!) gives the interaction-independent
contribution to entropy:

S/kp = In[[I(VNi/(APNiN;!)]



(Generalization 5: densely concentrated particles
& extension to Flory-Huggins theory)

S/kp = In[[I(VNi/(APNiN;!)]

Now consider non-interacting; i.e., overlapping, particles with N, particles in
a volume V, and N, particles in a volume V, and mixing them in a volume
V=V, +V,. Take ¢; = V;/V. The resulting change in entropy is given by

S “ideal translational (aka Flory-
B uggins) entropy” Ty deriving!

This mixing entropy is the same as that derived for non-overlapping particles
on a lattice, where the volumes V,= v, N, and V, = v, N, are the volumes of
densely packed particles each particle with volumes v, and v, and the mixture
has volume V=V, + V,. The contributions to entropy S from the overlaps in the
mixture is cancelled out by the contributions from overlaps to S in the volumes
V, and V, so that —AS is unchanged. (Lazaridis and Paulaitis, JPC 96:3847, 1992)

—AS

- = NqInx; + N,Inx, “ideal mixing entropy”
B



Colloidal forces

e The structure of matter at the length scales
greater than the atomic is governed by
electromagnetic forces.

e At the temperatures of interest to us, around
200-500 K, molecules composed of covalently
bonded atoms can be regarded as indivisible
units, and the electromagnetic forces that we
need consider are those that the molecules
exert on one another.



Colloidal forces

e The force F between two such molecules is often
described using a potential function W (r), which for
spherical molecules separated by a distance r is given

by

e A potential function can also be used to describe the
force between a pair of colloidal particles. The
electromagnetic forces that contribute to W (r) can be
grouped into several categories, namely excluded
volume (or steric), van der Waals, electrostatic,
hydrogen bonding, and hydrophobic.



Excluded-volume interactions

e When molecules or atoms are brought closer and closer
together, their electron clouds eventually overlap,
producing a very strong repulsion that increases so
steeply with decreasing intermolecular distance that it
easily overpowers all other forces.

e This excluded-volume force is largely responsible for
determining the short-range structure of liquids and
the crystallographic order of solids composed of small
molecules, or of densely packed hard colloidal
particles.

e Consider the excluded-volume forces for the simplest
cases, hard spherical particles and hard nonspherical
particles



Excluded Volume Effects

z = excluded volume parameter

consider dilute particles
o vol. z - add a particle

® probability that a particular particle
overlaps another: vz = ¢, volume fraction
O for N particles, number of configurations:

[V(1—wvz/2)]N factor of 2
vol. V () = NTASN avoids double
N =vV counting

S = kglnQ) = —kgNin[v(1 —vz/2)] (ignore const.)




Recall for Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed

A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=
number density

N
A/kgT = —S/kg = Nin (7)= Nin(v) + const

A/(VkgT) = vin(v) + const Pressure P = vkpT



Recall for Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed
A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=
number density

N
A/kgT =|—S/kg = Nin (7)= Nin(v)|+ const

A/(VkgT) = vin(v) + const

Pressure P = vkgT



Excluded Volume Effects

z = excluded volume parameter

consider dilute particles
o vol. z - add a particle

® probability that a particular particle
overlaps another: vz = ¢, volume fraction
O for N particles, number of configurations:

[V(1—wvz/2)]N factor of 2
vol. V () = NTASN avoids double
N =vV counting

S = kglnQl = —kgNin[v(1 —vz/2)] | (ignore const.)

— kg V|vinv + vin (1 — %)]

Q




Recall for Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed
A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=
number density

N
A/kgT =|—S/kg = Nin (7)= Nin(v)|+ const

A/(VkgT) = vin(v) + const

Pressure P = vkgT



Excluded Volume Effects

z = excluded volume parameter
consider dilute particles
o vol. z - add a particle

® probability that a particular particle
overlaps another: vz = ¢, volume fraction
O for N particles, number of configurations:

[V(1—wvz/2)]N factor of 2
vol. V () = NTASN avoids double
N =vV counting

S = kglnQ) = —kgNin[v(1 —vz/2)] (ignore const.)

~ — kg V[vinv Hvin (1 — E)]
~ B >
change of entropy per unit volume: kpvin (1 _ %)] ~ —%szvz

for small v

(due to excluded volume)



Hard Sphere Phase Diagram

Figure 2.1 The hard-sphere phase diagram. Below volume fraction ¢ < ¢ = 0.494, the suspension
is a disordered fluid. Between ¢; = 0.494 and ¢, = 0.545, there is coexistence of this disordered
phase with a colloidal crystalline phase with FCC (or HCP) order; the colloidal crystalline phase is
the equilibrium one up to the maximum close-packing limit of ¢, = 0.74. Nonequilibrium colloidal
“glassy” behavior can also occur between ¢, = 0.58 and the limit of random close packing at
¢rep = 0.64. (From Poon and Pusey, fig. 5, with kind permission of Kluwer Academic Publishers,
Copyright 1995.)
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Hard Sphere Phase Diagram

e Amazingly, the hard-sphere crystallization transition is driven
by entropy! At high packing densities, the ordering of the
spheres onto a regular lattice gives each sphere greater room
for positional fluctuations than would be the case for random
packing at the same density, thus more than compensating for
the entropic cost of the ordering.



Packing — Configurational vs.
Translational Entropy

Which one looks more crowded?




Hard Sphere Phase Diagram

O -
Fluid OOOCC?:) Aud 1000 Crystal %
0O ~1, | Crysal OOOOQ
' o(.zi

f————--‘ ................. :‘j i ; 4_ ¢
0 0.494 0.545 : 0.74

¢ Glass :
$1 ¢2 L

In the volume-fraction range 0.494 = ¢1 < ¢ <p2 = 0.545, the
disordered phase and the colloidal crystalline phase coexist.
The colloidal crystalline phase can theoretically persist from 2
up to the concentration at the HCP limit, cp = 0.7405; this is the
highest volume fraction that respects the hard-core diameter

of the spheres.



Hard Sphere Phase Diagram
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In addition to these equilibrium phases, there is a metastable glassy
disordered state that can exist at volume fractions above about 0.56. This
phase exists because at such high densities the long-range Brownian motions
of the spheres are suppressed by the crowding or "caging” effect of
neighboring spheres, and critical nuclei needed to induce crystallization
cannot form. Thus, if the concentration of spheres can be increased quickly
enough (say, by centrifugation) so that the concentration regime where
crystallization occurs is bypassed, one obtains a colloidal glass.



Hard Sphere Phase Diagram
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B

The most densely packed state of a glassy suspension of hard spheres is
"random close packing," for which ¢ = 0.64. This concentration is 86% that of
ordered close packing.

This difference in maximum packing between the ordered and disordered
states shows that the ordered state has more "free volume” than the
disordered one, and it is the difference in entropy associated with this free
volume that drives the ordering transition.



Hard Sphere Phase Diagram

& Q) Fiuid
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The most densely packed state of a glassy suspension of hard spheres is
"random close packing," for which ¢ = 0.64. This concentration is 86% that of
ordered close packing.

Interestingly, the density of liquids composed of spherical molecules or atoms

at their melting point is also typically about 86% as high as the density of the
crystal at O K.



Hard Sphere Phase Diagram

e Evenin the liquid state, with ¢ < $1 =0.49, local
order is not entirely absent. Liquid-state packing B

of hard spherical objects leads to correlations in At TN
molecular positions. For example, a hard //// \\(\"\/
spherical molecule in the liquid state is 4 /‘ \
surrounded by, and is in near contact with, on ) '
average about nine nearest neighbors. \ ‘\\ !

e The positional correlations that exist between W\ //:/
pairs of molecules are described by the radial oM -
distribution function, g(r). S -

e g(r) is proportional to the probability of finding
the center of mass of a second molecule a
distance r away from the center of mass of a

iven central molecule.
5 https://en.wikipedia.org/wiki/R

adial_distribution_function



40 |-

¢ =047 2 (r\”\ldl g(r) H.:'ncdhcr\«'l'll g(r) Liquid
; T=0 o \ e 3 =13
30} ]l 2 p\
Hml | " \JMJ\/\/W\AM# ‘b/\/v\ﬂ—w—
9 IMMMLW il | ‘
" 20t 2 4 6 8 10 0 2 4 6 8 10 00 2 4 6 8 10
DOI:10.1007/s10947-006-0388-3
10+

1 1 J

1.0 2.0 3.0 4.0
r/2a

Figure 2.3. Radial distribution function gus(r) for suspensions of hard spheres in the disordered
state at various volume fractions ¢, calculated from the Percus—Yevick equation. (From Russel et al.
1989, with permission of Cambridge University Press.)

e The normalization is chosen so that g(r) = 1 for molecules with no
positional correlation.

e Note that the largest peak is at nearest-neighbor contact, where r/2a
= 1. At high concentrations (¢ >= 0.4), there are smaller peaks at next-
neighbor packing "shells” located roughly at r/2a = 2, 3, and so on. In
the colloidal crystal state ( > 0.545), these peaks become infinitely
sharp and repeat out to infinite distances.



Structure factor e

In the general case in which the phase might (or LN '
. . . L] . ‘\ / /

might not) have positional order, one can define an NN g o

anisotropic pair correlation function, g(x), where x is QF--""

a position vector relative to a given molecule. The
Fourier transform of the pair correlation function,
namely,

Skk) = [g(x) exp(ik - x) dx E/ / / g(x) exp(ik - x) dx1dx, dx3

is called the structure factor with k the wave vector.

https://en.wikipedia.org/wiki/R
adial_distribution_function



Osmotic pressure is the minimum pressure which
needs to be applied to a solution to prevent the

inward flow of its pure solvent across O S m Ot | C P re S S u re Eﬂoin;ta);ﬁglzsa,llt?)W;astsattirr’oz;th

a semipermeable membrane. y
Let A;,; be the total free energy, ARFIT
consisting of solution with volume T i
V and pure solvent of volume Vi, =V [eo’e o% o
Remember: dA = —SdT — pdV v T

Doi, Soft Matter Physics, 2013



Recall Macroscopic Thermodynamics

Internal energy
For systems whose natural variables are T and V (volume), /

entro
Helmholtz free energy: A=U-TS* Py

(dA = dU — SdT —TdS)
First Law of Thermodynamics: dU =TdS — pdV

\ !

heat flow  work

These two imply: dA = —S5dT — pdV

multi-component system: G = Gibbs free energy
_(9G
Hj = (a_m)

dA = —SdT — pdV + Z pidN; p;j =chemical potential of j
J

T,p,Nj,k+]

Gibbs freeenergy: G =H —TS enthalpy: H = U + pV
G=U-TS+pV=A+pV

More detail: McQuarrie: Statistical Mechanics, Doi: Soft Matter Physics”



Osmotic pressure is the minimum pressure which
needs to be applied to a solution to prevent the

inward flow of its pure solvent across O S m Ot | C P re S S u r Ir|\1/loetn;ta);ta:gﬁza :”t?)W;astsattirroz;th

a semipermeable membrane.

Let A;,+ be the total free energy, AR 2
consisting of solution with volume ¢ v ‘i..]f
V and pure solvent of volume Vi, =V |eele % o

Remember: dA = —SdT — pdV v v, v

Doi, Soft Matter Physics, 2013

The work done by semi-permeable membrane is —I1dV

This must be equal to change in free energy dA;,;

04 (V) _ freeenergy of uniform soln
Thus, II=- oV f($) = 20l w/ vol. fraction ¢
AtOt — Vf((l)) T (VtOt _ V)f(O) NOte that (I) — M — E
Voo s Vv v
sothat SV ) _ _pr sotute _f'g
av V2 V

So | I =—f(p)+df'(p)+ f(0) Chain rule




Dilute Solution Expansion

NkgT kgT
lowest order term:  [I = VB = vkgT = Al
Z
N = number of particles in V 7 = vol. of solute
(van’t Hoff's law, analogous to ideal gas law ) _ Vsotute _ Nz

|74 |74



Osmotic pressure is the minimum pressure which
needs to be applied to a solution to prevent the

inward flow of its pure solvent across O S m Ot | C P re S S u r Membrane allows water, but

a semipermeable membrane. not particles, to pass through

Let A,,; be the total free energy, R d

consisting of solution with volume iy =

V and pure solvent of volume Vo, — V' [cse <%
Remember: d4 = —SdT — pdV v ViV

Doi, Soft Matter Phyéibs, 2013
The work done by semi-permeable membrane is —I1dV

This must be equal to change in free energy dA;,;

Thus, | = — 0A¢o: (V) () = free energy of uniform soln

aVv vol w/ vol. fraction ¢
Atot — Vf((l)) + (Vtot — V)f(O) NOte that (I) — Vsolute — E
14 It % %
sothat SV ) _ _prlsotute _f'g
aV V2 V

So | 1 =—f(p)+df'(p)+ f(0) Chain rule




Recall for Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed
A/kgT = —InQ = —NInV + In(N!) + const (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=
number density

N
A/kgT = —S/kg = Nin (7) = Nin(v) + const

A/(VkgT) = vin(v) + const

Pressure P = vkgT




Dilute Solution Expansion

NkgT kgT
lowest order term: I = VB = vkpT = Pkp
Z
N = number of particles in V 7 = vol. of solute

(van’t Hoff’s law, analogous to ideal gas law ) Vsotute _ Nz

|74 |74

Derivation: N

A ~ NknTl (N)
~ BnV

aAtot(V) __0A (V)

II'=-— oV




Dilute Solution Expansion

NkgT kgT
lowest order term:  [I = VB = vkgT = Al
Z
N = number of particles in V 7 = vol. of solute
(van’t Hoff's law, analogous to ideal gas law ) _ Vsotute _ Nz
. vV vV
higher Qrder I = ¢kBT_I_A2¢2 + Asp3 +....
expansion: Z

A,, A; = 2" and 3" virial coefficients

Derivation: N

A ~ NknTl (N)
~ BnV

aAtot(V) __0A (V)

II'=-— oV




Depletion Potential d = 2R, =

depletant diameter

A/kgT = —InQ = —NInV + In(N!) + const 2Ry

< >

"\ too big for

when h>d, Sy Gop
particles S P
enter gap, | o
[Mvanishes B B =kzTv
B e 11
Area 1 B e—
(of plate) \
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Recall for Non-Interacting Particles

Helmholtz free energy of purely entropic system: A = —TS

A = —kgT InQ Q= partition function

overlapping (phantom) particles:  E;= 0, for every state j
VN
NIA3N
V = system volume, A = lattice spacing (or “deBroglie wavelength)”

Q = total number of unique states =

V/A3 = number of positions at which a particle can be placed

A/kgT = —InQ = —NInV + In(N!) + const| (const. involves A )
Stirling’s approx: In(N!) = NInN — N = NInN (N large)

v=N/V=
number density

N
A/kgT = —S/kg = Nin (7)= Nin(v) + const

A/(VkgT) = vin(v) + const Pressure P = vkpT



. , o -
Depletion Potential =y
A/kgT = —InQ = —NInV + In(N!) + const 2y

if the number N of small depletant particles is
fixed, but the volume V available to them is
changed because of re-arrangement of the two
surfaces, this will produce a force F given by

a(InV) (of pIateT‘» |

N=vV F=-0A/0h=—kgTN

dh

_ kTvla(V) T av Hav
R T T L TA R 1A
potential/area for flat plate: N —
kgTv(Area) % |

h d

1 d
wih) = _Areaf F(x)dx

) too big for

when h>d, —

particles |

enter gap, | e

[T vanishes BRI =k, Tv
| 11

Area

P

Doi, Soft Matter
Physics, 2013

[T = osmotic pressure for
dilute particles

1%

Note: ﬁ = Area

w(h) = vkgT(h — d),for h < d,

h =0, forh >d



Curved surfaces & Thin Gaps: Derjaguin

XApproximation
N

R Treat a thin region of
variable gap as a
series of small

] regions with parallel
— y hy R-y flat surfaces, with
each region having a

h
—X ! |X1
| different gap
a Nels
https://en.wikipedia.org/wiki/Derja
r guin_approximation
F. v
h

r




Derjaguin Approximation for Two Spheres A 7o) /

K-

fl(P)=h+2(R—\/R2—p2)~h+— /M:ﬁm :

JRZ —p%2 = R{J1—p2/R2 = R(1 + p*/2R?) =

At position p, take a ring of width dp, with area 2zpodp

If we have a potential per unit area w(h) between flat
surfaces, then the potential U(h) between spheres is
R

UCh) = j w(h)2mpdp new variable: x = h + p?f =h
0 dx = 2pdp/R
% oU(h
UCh) = nRJ w(x)dx F(h) = —% = mRw(h)
h

Note: if spheres have . R{R; >
unequal radii: UCh) = 2m R, + szh w(x)dx




Depletion Potential for spheres

v = concentration of depletant
for flat plate: w(h) = vkgT(h — d),for h < d,

=0, forh >d Doi, Soft Mattercl?hysms, 2013

—

for spheres, replace h with h(x)

w(h) = vkgT (ﬁ(x) — d), for h(x) < d,
=0, forh(x) >d l

0.0)

for two spheres: U(h) = R d overlapping
WO SPp (2) T th(X) X depletion region

remember, x = h + % =h

d
U(h) = UkBTT[th (X — d) d)(," — —%UkBTT[R(d _ h)z

volume of overlapping
depletion regions




Equilibrium phase behaviour of isotropic spheres
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Short range interactions

lllet, Orrock, Poon, and
Pusey, Phys Rev E
51:1344 (1995)

Medium range interactions

depletant conc.
acts as inverse
temp.

Depletion interaction;

a = radius of large sphere

Rg = radius of small sphere or
polymer depletant

S. M. ILETT, A. ORROCK, W. C. K. POON, AND P. N. PUSEY
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Review on liquid-liquid phase transition

IMF = intermolecular forces

Liquid-Liquid Mixtures
* If the IMF’s are AmixGm = x4RTInx, + xgRTInxg + SRTx4xp
net repulsive o

between A and B, 3
¢ will increase.
* Once ¢ is greater 701
than 2, thentwo €
minima will —'he
b
emerge. P
* As a result, two »
contaminated e
phases will form. .
0 0.5 1
XA

https://www.youtube.com/watch?app=deskto
p&v=Tw_ul4-94 |&ab_channel=StuartWinikoff



Review on liquid-liquid phase transition

Liquid-Liquid Phase Diagrams

* Using A,,ixGmy, @

liquid-liquid phase
diagram can be
generated. < 202| - s -
« This diagram will tell : oy IS ..o/, .
you below which ©
temps the solution 2
: £
will separate(T ). kS
* It can also tell you |
the composition of 273 i e of
the resulting phases. 0 Ve ok 0.0 0.5

Mole fraction of nitrobenzene, Xy



Review on liquid-liquid phase transition

Liquid-Liquid Phase Minima

For a regular solution, the phase separation can be predicted using:
AGpix = NRT (xylnx, + xglnxg + Ex4xp)

As system will phase separate if there are more than one minimum
value for AG ;4

.. . . 0AG i
These minima can be predicted by setting: Tm‘x =0
A

These yield an equation of:

ln( T4 ) — _&(1 = 2x,)

1—XA




Graphical solution

Liquid-Liquid Phase Minima

Intersection

~£(1 - 2x)

ln( oz ) £l - 2x)

1 — xA
Intersection

0.2 0.4 0.6 0.8 1



Review on liquid-liquid phase transition

Liquid-Liquid Phase Diagrams
* The nature of ¢

will change with

temperature.
292

* Many liquid -
290 ===

mixtures possess
an upper critical
temperature
(Tyc), below
which the IMF’s
between the
components are

Temperature, T/K

273 —

significantly 0 0.2 0.4 0.6 0.8
diSSimilar‘, Mole fraction of nitrobenzene, x|,



Equilibrium phase behaviour of isotropic spheres
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Rigid Nonspherical Particles: The Nematic Phase

e For molecules that are not spherical, packing and ordering transitions
can occur that are more complex than those for spherical molecules.

e the simplest nonspherical shape is a stiff, long cylinder

https://en.wikipedia.org/wiki/Tobacco

mosaic virus

Transmission electron micrograph of TMV particles negative stained to enhance
visibility at 160,000x magnification


https://en.wikipedia.org/wiki/Tobacco_mosaic_virus
https://en.wikipedia.org/wiki/Tobacco_mosaic_virus

Rod-Like Objects

tobacco mosaic virus

L=300 nm long, d=18 nm wide

Diffusivity:

kg

p= T (%) 403
37T,uBL(nd 3)

https://www.google.com/search?q=tobacco+mosaic+virus+electron+micrograph&tbm=isch&source=iu&ictx=1&fir=VCHszPqFz02MJM%
253A%252Cys5UEQPYy30xCoM%252C_&usg=__ 4QIVfGScIPhDHu33e-dV01X-
65A%3D&sa=X&ved=0ahUKEw;ji5ZGC3KjYAhWr64MKHSdhCScQ9QEINjAE#imgrc=VCHszPqFz02MJM:



You need to log in using your umich.edu account in order to access this poll

Lecture 5 Poll: Cylinder Packing

Consider only excluded volume effects, how should we expect

the closest packing of cylindrical rods be compared to the HCP
limit (~0.74) of hard spheres?

e A. higher
e B. the same

e C. lower

Long URL https://forms.gle/y4xy3HsbFV6npW956
Short URL https://shorturl.at/gkGR7



https://forms.gle/y4xy3HsbFV6npW956
https://shorturl.at/gkGR7

Consider only excluded volume effects, how should we expect the closest packing of
cylindrical rods be compared to the HCP limit (~0.74) of hard spheres?

14 responses

@ Higher
@® The Same
@ Lower




In the two-dimensional Euclidean plane, Joseph Louis Lagrange
proved in 1773 that the highest-density lattice packing of circles
is the hexagonal packing arrangement,['l in which the centres of
the circles are arranged in a hexagonal lattice (staggered rows,
like a honeycomb), and each circle is surrounded by six other
circles. For circles of diameter D and hexagons of side length D,
the hexagon area and the circle area are, respectively:

Ao — 3v/3 D? Identical circles in a 5
H= 79" hexagonal packing
T arrangement, the densest
Ac = ZD2 packing possible

The area covered within each hexagon by circles is:

Apc = 3A¢ = ?%m

Finally, the packing density is:

3T "2
fi= Agc TP
2
- arrangement of equal circles with
= — 2~ 0.9069 transitions to an irregular arrangement
2v/3 of unequal circles

https://en.wikipedia.org/wiki/Circle_packing#:~:text=In%20the%20two0%2Ddime
nsional%20Euclidean,is%20surrounded%20by%20six%200other



Packing of Cylinders

e The closest packing of cylindrical rods occurs when they are parallel
to each other and packed hexagonally in the plane orthogonal to their
axes; in this case, ¢ = 0.9069.

e If the density of long ordered rods is decreased, a melting transition
will occur in which the in-plane hexagonal order is lost, but the
orientational order of the rod axes is partially preserved.

e This partially ordered state is called a nematic. States with partial

order, including the nematic state, are common for stiff molecules of
high aspect ratio.



_iterature presentations for
_ecture 5

Soft matter Anisotropy of building blocks and their
P. G. de Gennes assembly into complex structures

Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauguelin,
75231 Paris Cedex 05, France

PROGRESS ARTICLE

A revolution in novel nanoparticles and colloidal building blocks has been enabled by recent breakthroughs
in particle synthesis. These new particles are poised to become the ‘atoms’ and ‘molecules’ of tomorrow’s
materials if they can be successfully assembled into useful structures. Here, we discuss the recent

. s . rogress made in the synthesis of nanocrystals and colloidal particles and draw analogies between these
What do we mean by soft matter? Americans prefer to tive sites at both ends of the spac¢ e 4 g 3 g

call it “complex fluids,” and this does indeed bring in two was: what is the minimum length o new particulate building blocks and better-studied molecules and supramolecular objects. We argue for a

of the major features: It turns out that the answer is 1 conceptual framework for these new building blocks based on anisotropy attributes and discuss the
(de Gennes, 1969). The magic nun prognosis for future progress in exploiting anisotropy for materials design and assembly.
(1) Complexity. We may, in a certain primitive sense, Below 14 units, you will not usual
cav that madern hinlnov hae nraceeded fram ctndies an the decired eanfarmation. Ahave 1.
RESEARCH
SHARON C. GLOTZER!-2* and deposition®2. Physical methods developed include electrified
jetting, microcontact printing, emulsion drying, selective
AND MICHAEL J. SOLOMON™* deposition, surface templating, direct writing and lithography'*2°.
of Chemical Engineeri iversity of Michigan, Ann Arbor, Biologically inspired methods include the use of plant extracts®,
Michigan 48109-2136, USA fungi* and viruses to synthesize metal nanoparticles of various
R E V IE w S U M M A R Y 2Department of Materials Science and Engineering, University of Michigan, shapes. These methods draw from the diverse fields of chemistry,
Ann Arbor, Michigan 48109-2136, USA physics, biology, engineering and materials science, and, in
*e-mail: sgl ich.edu; mj: ichedu combination, provide a powerful arsenal for the fabrication of new
NANOPARTICLES Perspective

Nonadditivity of Beyond molecules: Self-assembly of mesoscopic and

macroscopic components

nanoparticle interactions ... ...

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

. . . Self-assembly is a process in which components, either separate or linked, spontaneously form ordered aggregates. Self-assembly can

Ca.l'los A' Sllvera' BatISta-: Ronald G' La-rson,* NIChOIa.S A' KOtDV* occur with components having sizes from the molecular to the macroscopic, provided that appropriate conditions are met. Although much
of the work in self-assembly has focused on molecular components, many of the most interesting applications of self-assembling processes
can be found at larger sizes (hanometers to micrometers). These larger systems also offer a level of control over the characteristics of
the components and over the interactions among them that makes fundamental investigations especially tractable.



Literature and youtube
presentations for Lecture 5

* Random group assignments

* https://docs.google.com/spreadsheets/d/1EWhNB
h12nLaJGBrVEoSedyOx5w41fPwD1HhYuJGUd9Y/edit

#gid=267969935



https://docs.google.com/spreadsheets/d/1EWhNBhl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit
https://docs.google.com/spreadsheets/d/1EWhNBhl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit
https://docs.google.com/spreadsheets/d/1EWhNBhl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit

Student 2/6 2/13 | 2/20 3/5 3/12  3/19 3/26 4/2 4/9 4/16

A A A D A A B c D A

Mitchell Godek D C D B D B A C C B
Jen Bradley D A A D B D D A A D
B D D C B A C D D C

Charlotte Zhao D D B B A C A B A A
B B B B D C C A D C

William Morgan A C A B C A D B C B
B C C C B B B D A D

Henry Thurber A D C A D D A B C A
C A © B A C D A D D

C D B A C A B D A B

Gabrielle Grey A A D C B D A D D C
Weiyuan Fan D B D D C B B B B D
Aham Lee C B A C A B D A B A

C C B D C D C c C c

Nathan Bryant C D A A D B A C C B
Nhayeon Lee B B C C C C D C B C
Nathan Irgang B C B A A C B D B D
Muchen Wang A B C A D D C A A A
Anna Klinger D A D D B A C B B B

Key

Video Presentation

First Paper Presentation

Second Paper Presentation




Week 3

Group Paper Title
A P4 tetrahedral_diffusion_PNAS_ 15
B P3_Weeks_Science
C P1 Transition_Brownian_Motion_Nature_Physics
D P2_Han_et_al _Science_Brownian_ellipsoid




