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Macroscopic Thermodynamics

(𝑑𝐴 ≡ 𝑑𝑈 − 𝑆𝑑𝑇	 − 𝑇𝑑𝑆)
Helmholtz free energy:

First Law of Thermodynamics: 𝑑𝑈 = 𝑇𝑑𝑆	 − 	 𝑝𝑑𝑉

heat flow work

𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉These two imply:

𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉 +/
!

𝜇!𝑑𝑁!

multi-component system:

𝜇!  ≡ "#
"$! %,',$",()!

Internal energy

entropy

= chemical potential of j

𝐺 ≡ Gibbs free energy

𝜇!

More detail:  McQuarrie: Statistical Mechanics, Doi: Soft Matter Physics”

𝐺 ≡ 𝐻 − 𝑇𝑆Gibbs free energy: 𝐻 ≡ 𝑈 + 𝑝𝑉enthalpy:

𝐴 ≡ 𝑈 − 𝑇𝑆

For systems whose natural variables are T and V (volume),

𝐺 ≡ 𝑈 − 𝑇𝑆 + pV = A + pV



Microscopic Thermodynamics

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄= partition function, 𝑄≡+
8

exp(
−𝐸8
𝑘7𝑇

)
sum is over all states, including 
ones with same energy (i.e., 
degenerate states)

𝑝8 ∝ exp(−
9!
:";

)Boltzmann distribution: 
Boltzmann distribution is a special case of a Poisson distribution

example:  randomly divide a long line into a huge 
number of segments

In the limit of large number of cuts, the distribution of line segment lengths is  
p(L) ∝ exp(− <

=<>
)

𝑝8 = exp(−
9!
:";

)/ ∑8 exp
?9!
:";

connection to macroscopic thermodynamics: 

= exp(−
𝐸8
𝑘7𝑇

)/𝑄

𝑝8 ≡ 𝑝𝑟𝑜𝑏. 𝑜𝑓	𝑠𝑡𝑎𝑡𝑒	𝑗

+
8

𝑝8 = 1
normalization constant



Application: Metropolis Monte Carlo Simulation

We wish to obtain thermodynamic averages of properties of a system, such as a 
molecular system, with a great many microstates, too many to average over all of 
them.  So, we need to sample these microstates fairly, i.e., weighted by their 
contribution to free energy.

So, we pick a starting state, S1, and choose a possible re-arrangement of this state 
to slightly different State S2 randomly out of a total of N possible re-arrangements.  

If E2 < E1  transition to state S2 from S1, with probability unity, 

if E2 > E1 transition to state S2 from S1, with probability exp [−(E2 −	E1)/kBT] 
where we use a random number to decide if to transition.  If we do not transition, 
the system is kept in State 1 for that step of the simulation.  

We then draw randomly a new State S2 out of the N possibilities and repeat.

Ei = energy of State Si ; i= 1, 2   



Application: Metropolis Monte Carlo Simulation

If for any State i,  there are always the same number N possible new states that 
can be sampled, then in a long run, any state i will be sampled with frequency 
equal to its Boltzmann weight:   

𝑝! = exp(− "!
#"$

)/ ∑% exp
&"#
#"$

This is the proper thermodynamic weight that this state should receive in the 
thermodynamic ensemble. Thus, any property averaged over the sampled states 
will converge to its thermodynamic average.    E.g.,   @𝐸	= ∑! 𝑝! 𝐸!

reject accept



Non-Interacting Particles

L = lattice spacing (or 
“deBroglie wavelength”)

How many ways are there of placing a single particle in 3D 
space? 

There are V/L3

places to put a single 
particle

L

VN/L3N

ordered ways of placing N 
particles, allowing overlap

number of ways of 
ordering the N particles: 𝑁!

𝐸8= 0, for every state j 𝑄≡+
8CD

E

exp
−𝐸8
𝑘7𝑇

= 𝑁 = 𝑁𝑜. 𝑜𝑓	𝑠𝑡𝑎𝑡𝑒𝑠



Particle-Wave Dualism

λdB = h/p All particles are waves!

λdB = de Broglie wavelength

h = Planck’s Constant
  6.63 × 10-34 Joule·second

p = momentum of particle
= mass × velocity

E = p2/2m

http://physics.weber.edu/carroll/honors/duality.htm

E = (h/λ)2/2m

m – particle mass

Prof.  Louis De Broglie 1923





Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = F#

E!H$#

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘7𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘7𝑇

= −𝑆/𝑘7

(const. involves L )

𝐸8= 0, for every state j

(N large)



Non-Interacting Particles 
(Generalization 1: non-uniform concentration)

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 
number density

𝐴(𝒙)/(𝑉𝑘7𝑇) ≈ 𝑣(𝒙)ln[𝑣 𝒙 ] 	+ 𝑐𝑜𝑛𝑠𝑡

= −𝑆/𝑘7

𝑣I = reference	concentration; 	𝐴	is	then	
free	energy	relative	to	reference	state

example:  consider the reference state to be one of uniform 
concentration 𝑣I. Relative to this, a non-uniform 
concentration has free energy:

𝐴
𝑘7𝑇

=
−𝑆
𝑘7

= _
F
𝑣𝑙𝑛 𝑣/𝑣I 𝑑𝑉

The integral is 
over physical 
space

= 𝑣(𝒙)ln[
𝑣 𝒙
𝑣I

]
𝒙 = position	vector



Non-Interacting Particles 
(Generalization 2: multiple species)

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡

𝑣 = 𝑁/𝑉= 
number density

𝐴/(𝑘7𝑇) =+
J

𝑁J 𝑙𝑛 𝑣J + 𝑐𝑜𝑛𝑠𝑡

= −𝑆/𝑘7

consider the reference state to be one in which each 
particle type is separated from the others at a uniform 
concentration 𝑣I = ∑J 𝑣J Relative to this, free energy is:

generalize: (uniform 
concentration)

𝐴
𝑘7𝑇

= +
J

𝑁J 𝑙𝑛 𝑣J −+
J

𝑁J 𝑙𝑛 𝑣I =+
J

𝑁J 𝑙𝑛 𝑣J/𝑣I

K
F:";

= ?L
F:"

= ∑J 𝑣J 𝑙𝑛 𝑥J 𝑥J = 𝑣J / ∑J 𝑣J = mole fraction of i
“Ideal mixing” entropy



Non-Interacting Particles 
(Generalization 3: non-uniform probability 

distribution)
𝐴/𝑘7𝑇 𝑁J =number of particles in state i= −𝑆/𝑘7 =+

J

𝑁J 𝑙𝑛 𝑃J

= 𝑁+
J

𝑃J 𝑙𝑛 𝑃J

𝑃J =probability (or fraction of times) 
that particle is in state i = 𝑁J/N
𝑁 = total number of particles

−+
J

𝑃J 𝑙𝑛 𝑃J = Shannon entropy (per 
particle) from information 
theory

high Shannon entropy means low 
information content, and vice versa

Maximum entropy

Claude Shannon, 
Univ. of Mich. grad, 
born in Petoskey, MI

“Information content of the known universe:” 10DI
%&$

(equal a priori probability of each state) 



Non-Interacting Particles 
(Generalization 4: non-uniform distribution in 

orientation space)

qq

isotropic
anisotropic distribution, 𝜓(𝜃) 

𝜓I Ω = 𝜓I 𝜃, 𝜙 =
1
4𝜋

In	3D	space, 𝜓 𝜃, 𝜙 d𝜃𝑑𝜙 = 
probability orientation angles are 
between 𝜃 and 𝜃+d𝜃 and 
between	𝜙 and	𝜙+d𝜙

=∫M 𝜓𝑙𝑛 𝜓/𝜓I 𝑑Ω
𝐴
𝑘7𝑇

=
−𝑆
𝑘7

= _
I

NO
_
I

O
𝜓𝑙𝑛 𝜓/𝜓I 𝑠𝑖𝑛 𝜃𝑑𝜃𝑑𝜙

reference state:  uniform orientation distribution
𝑑Ω = 𝑑𝑢N

3D isotropic



Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄 = ∏F#'
∏(H$#'E'!)	

∫…∫exp[− Q(
:";

]

𝑄= partition function

Interacting particles: 

𝑆/𝑘7 = ln[∏(𝑉E'/(ΛRE'𝑁J! )]

Integral is over reduced coordinates that each vary from 0 to 1

∏(𝑉E'/𝑁J!) gives the interaction-independent 
contribution to entropy:  

(Generalization 5: densely concentrated particles 
& extension to Flory-Huggins theory)



𝑆/𝑘7 = ln[∏(𝑉E'/(ΛRE'𝑁J! )]

Now consider non-interacting; i.e., overlapping, particles with N1 particles in 
a volume V1 and N2 particles in a volume V2 and mixing them in a volume 
V= V1 + V2.  Take 𝜙! ≡ 𝑉!/𝑉. The resulting change in entropy is given by 

−Δ𝑆
𝑘7

= 𝑁Dln𝜙D +𝑁Nln𝜙N
“ideal translational (aka Flory-
Huggins) entropy”

−Δ𝑆
𝑘7

= 𝑁Dln𝑥D +𝑁Nln𝑥N “ideal mixing entropy”

This mixing entropy is the same as that derived for non-overlapping particles 
on a lattice, where the volumes V1= v1 N1 and V2 = v2 N2 are the volumes of 
densely packed particles each particle with volumes v1 and v2 and the mixture 
has volume V= V1 + V2. The contributions to entropy 𝑆 from the overlaps in the 
mixture is cancelled out by the contributions from overlaps to S in the volumes 
V1 and V2 so that −Δ𝑆 is unchanged. (Lazaridis and Paulaitis, JPC 96:3847, 1992)

(Generalization 5: densely concentrated particles 
& extension to Flory-Huggins theory)

Try deriving!



Colloidal forces

• The structure of matter at the length scales 
greater than the atomic is governed by 
electromagnetic forces.

• At the temperatures of interest to us, around 
200-500 K, molecules composed of covalently 
bonded atoms can be regarded as indivisible 
units, and the electromagnetic forces that we 
need consider are those that the molecules 
exert on one another.



Colloidal forces

• The force F between two such molecules is often 
described using a potential function W (r), which for 
spherical molecules separated by a distance r is given 
by 

• A potential function can also be used to describe the 
force between a pair of colloidal particles. The 
electromagnetic forces that contribute to W (r) can be 
grouped into several categories, namely excluded 
volume (or steric), van der Waals, electrostatic, 
hydrogen bonding, and hydrophobic. 



Excluded-volume interactions

• When molecules or atoms are brought closer and closer 
together, their electron clouds eventually overlap, 
producing a very strong repulsion that increases so 
steeply with decreasing intermolecular distance that it 
easily overpowers all other forces.

• This excluded-volume force is largely responsible for 
determining the short-range structure of liquids and 
the crystallographic order of solids composed of small 
molecules, or of densely packed hard colloidal 
particles.

• Consider the excluded-volume forces for the simplest 
cases, hard spherical particles and hard nonspherical
particles



Excluded Volume Effects
𝑧 = excluded volume parameter

vol. V

vol. 𝑧
probability that a particular particle 
overlaps another: 𝑣𝑧 = f, volume fraction
for N particles, number of configurations: 

𝑆 = 𝑘7𝑙𝑛Ω = −𝑘7𝑁𝑙𝑛[𝑣 1 − 𝑣𝑧/2 ]

Ω ≈
[𝑉(1 − 𝑣𝑧/2)]E

𝑁! ΛRE
factor of 2 
avoids double 
counting

consider dilute particles
add a particle

(ignore const.)
𝑁 = 𝑣𝑉



Recall for Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = F#

E!H$#

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘7𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘7𝑇

= −𝑆/𝑘7

(const. involves L )

𝐸8= 0, for every state j

(N large)



Recall for Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = F#

E!H$#

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘7𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘7𝑇

= −𝑆/𝑘7

(const. involves L )

𝐸8= 0, for every state j

(N large)



Excluded Volume Effects
𝑧 = excluded volume parameter

vol. V

vol. 𝑧
probability that a particular particle 
overlaps another: 𝑣𝑧 = f, volume fraction
for N particles, number of configurations: 

𝑆 = 𝑘7𝑙𝑛Ω = −𝑘7𝑁𝑙𝑛[𝑣 1 − 𝑣𝑧/2 ]

Ω ≈
[𝑉(1 − 𝑣𝑧/2)]E

𝑁! ΛRE
factor of 2 
avoids double 
counting

consider dilute particles

≈  − 𝑘7 𝑉[𝑣𝑙𝑛𝑣 + 𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

add a particle

(ignore const.)
𝑁 = 𝑣𝑉



Recall for Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = F#

E!H$#

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘7𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘7𝑇

= −𝑆/𝑘7

(const. involves L )

𝐸8= 0, for every state j

(N large)



Excluded Volume Effects
𝑧 = excluded volume parameter

vol. V

vol. 𝑧
probability that a particular particle 
overlaps another: 𝑣𝑧 = f, volume fraction
for N particles, number of configurations: 

𝑆 = 𝑘7𝑙𝑛Ω = −𝑘7𝑁𝑙𝑛[𝑣 1 − 𝑣𝑧/2 ]

change of entropy per unit volume: 𝑘7𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

(due to excluded volume)

Ω ≈
[𝑉(1 − 𝑣𝑧/2)]E

𝑁! ΛRE
factor of 2 
avoids double 
counting

consider dilute particles

≈  − 𝑘7 𝑉[𝑣𝑙𝑛𝑣 + 𝑣𝑙𝑛 1 −
𝑣𝑧
2
]

add a particle

(ignore const.)
𝑁 = 𝑣𝑉

for small 𝑣 

≈ −
1
2
𝑘7𝑧𝑣N



Hard Sphere Phase Diagram

(vol. fr.)

videos from Solomon group



Hard Sphere Phase Diagram

• Amazingly, the hard-sphere crystallization transition is driven 
by entropy! At high packing densities, the ordering of the 
spheres onto a regular lattice gives each sphere greater room 
for positional fluctuations than would be the case for random 
packing at the same density, thus more than compensating for 
the entropic cost of the ordering.



Packing – Configurational vs. 
Translational Entropy

Which one looks more crowded?



Hard Sphere Phase Diagram

• In the volume-fraction range 0.494 = ф1 < ф <ф2 = 0.545, the 
disordered phase and the colloidal crystalline phase coexist. 
The colloidal crystalline phase can theoretically persist from 2 
up to the concentration at the HCP limit, cp = 0.7405; this is the 
highest volume fraction that respects the hard-core diameter 
of the spheres.



Hard Sphere Phase Diagram

• In addition to these equilibrium phases, there is a metastable glassy 
disordered state that can exist at volume fractions above about 0.56. This 
phase exists because at such high densities the long-range Brownian motions 
of the spheres are suppressed by the crowding or "caging” effect of 
neighboring spheres, and critical nuclei needed to induce crystallization 
cannot form. Thus, if the concentration of spheres can be increased quickly 
enough (say, by centrifugation) so that the concentration regime where 
crystallization occurs is bypassed, one obtains a colloidal glass. 



Hard Sphere Phase Diagram

• The most densely packed state of a glassy suspension of hard spheres is 
"random close packing," for which ф = 0.64. This concentration is 86% that of 
ordered close packing.

• This difference in maximum packing between the ordered and disordered 
states shows that the ordered state has more "free volume” than the 
disordered one, and it is the difference in entropy associated with this free 
volume that drives the ordering transition.



Hard Sphere Phase Diagram

• The most densely packed state of a glassy suspension of hard spheres is 
"random close packing," for which ф = 0.64. This concentration is 86% that of 
ordered close packing.

• Interestingly, the density of liquids composed of spherical molecules or atoms 
at their melting point is also typically about 86% as high as the density of the 
crystal at 0 K.



Hard Sphere Phase Diagram

• Even in the liquid state, with ф < ф1 = 0.49, local 
order is not entirely absent. Liquid-state packing 
of hard spherical objects leads to correlations in 
molecular positions. For example, a hard 
spherical molecule in the liquid state is 
surrounded by, and is in near contact with, on 
average about nine nearest neighbors. 

• The positional correlations that exist between 
pairs of molecules are described by the radial 
distribution function, g(r).

• g(r) is proportional to the probability of finding 
the center of mass of a second molecule a 
distance r away from the center of mass of a 
given central molecule. 

https://en.wikipedia.org/wiki/R
adial_distribution_function



• The normalization is chosen so that g(r) = 1 for molecules with no 
positional correlation.

• Note that the largest peak is at nearest-neighbor contact, where r/2a 
= 1. At high concentrations (ф >= 0.4), there are smaller peaks at next-
neighbor packing "shells” located roughly at r/2a ≈ 2, 3, and so on. In 
the colloidal crystal state ( > 0.545), these peaks become infinitely 
sharp and repeat out to infinite distances.

DOI:10.1007/s10947-006-0388-3



Structure factor
• In the general case in which the phase might (or 

might not) have positional order, one can define an 
anisotropic pair correlation function, g(x), where x is 
a position vector relative to a given molecule. The 
Fourier transform of the pair correlation function, 
namely,

• is called the structure factor with k the wave vector. 

https://en.wikipedia.org/wiki/R
adial_distribution_function



Let 𝐴TUT be the total free energy, 
consisting of solution with volume 
𝑉	and pure solvent of volume 𝑉TUT − 𝑉

Doi, Soft Matter Physics, 2013

Membrane allows water, but 
not particles, to pass through

Remember: 𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉

Osmotic Pressure
Osmotic pressure is the minimum pressure which 
needs to be applied to a solution to prevent the 
inward flow of its pure solvent across 
a semipermeable membrane.



Recall Macroscopic Thermodynamics

(𝑑𝐴 ≡ 𝑑𝑈 − 𝑆𝑑𝑇	 − 𝑇𝑑𝑆)
Helmholtz free energy:

First Law of Thermodynamics: 𝑑𝑈 = 𝑇𝑑𝑆	 − 	 𝑝𝑑𝑉

heat flow work

𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉These two imply:

𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉 +/
!

𝜇!𝑑𝑁!

multi-component system:

𝜇!  ≡ "#
"$! %,',$",()!

Internal energy

entropy

= chemical potential of j

𝐺 ≡ Gibbs free energy

𝜇!

More detail:  McQuarrie: Statistical Mechanics, Doi: Soft Matter Physics”

𝐺 ≡ 𝐻 − 𝑇𝑆Gibbs free energy: 𝐻 ≡ 𝑈 + 𝑝𝑉enthalpy:

𝐴 ≡ 𝑈 − 𝑇𝑆

For systems whose natural variables are T and V (volume),

𝐺 ≡ 𝑈 − 𝑇𝑆 + pV = A + pV



Π = −
𝜕𝐴TUT(𝑉)

𝜕𝑉

Let 𝐴TUT be the total free energy, 
consisting of solution with volume 
𝑉	and pure solvent of volume 𝑉TUT − 𝑉

The work done by semi-permeable membrane is −Π𝑑𝑉 

This must be equal to change in free energy d𝐴TUT

Thus, 

𝐴TUT = Vf ϕ + 𝑉TUT − 𝑉 f(0)

Π = −f ϕ + ϕ𝑓V ϕ + 𝑓(0)So

𝜕𝑓(𝑉WUXYTZ𝑉 )
𝜕𝑉

= −𝑓′
𝑉WUXYTZ
𝑉N

= −𝑓′
ϕ
𝑉

So that

f ϕ ≡
𝑓𝑟𝑒𝑒	𝑒𝑛𝑒𝑟𝑔𝑦

𝑣𝑜𝑙
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of uniform soln 
w/ vol. fraction ϕ  

Membrane allows water, but 
not particles, to pass through

Remember: 𝑑𝐴 = −𝑆𝑑𝑇 − 	𝑝𝑑𝑉

Chain rule

Osmotic Pressure
Osmotic pressure is the minimum pressure which 
needs to be applied to a solution to prevent the 
inward flow of its pure solvent across 
a semipermeable membrane.

Note that ϕ = F)*+,-.
F  = E[

F



Dilute Solution Expansion
Π =

𝑁𝑘7𝑇
𝑉

= 𝑣𝑘7𝑇 =
𝜙𝑘7𝑇
𝑧

𝑧	= vol. of solute

lowest order term:

(van’t Hoff’s law, analogous to ideal gas law )
𝑁	= number of particles in V

ϕ = F)*+,-.
F  = E[

F
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Recall for Non-Interacting Particles
Helmholtz free energy of purely entropic system: 𝐴 = −𝑇𝑆

𝐴 = −𝑘7𝑇	𝑙𝑛𝑄

𝑄 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑠𝑡𝑎𝑡𝑒𝑠 = F#

E!H$#

𝑄= partition function
overlapping (phantom) particles: 

V = system volume, L = lattice spacing (or “deBroglie wavelength)”
V/L3 = number of positions at which a particle can be placed

𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡
ln 𝑁! ≈ 𝑁𝑙𝑛𝑁 − 𝑁Stirling’s approx: ≈ 𝑁𝑙𝑛𝑁

𝐴/𝑘7𝑇 = 𝑁𝑙𝑛
𝑁
𝑉 = 𝑁𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 𝑣 = 𝑁/𝑉= 

number density
𝐴/(𝑉𝑘7𝑇) ≈ 𝑣𝑙𝑛 𝑣 + 𝑐𝑜𝑛𝑠𝑡 Pressure	𝑃 = 𝑣𝑘7𝑇

= −𝑆/𝑘7

(const. involves L )

𝐸8= 0, for every state j

(N large)



Dilute Solution Expansion
Π =

𝑁𝑘7𝑇
𝑉

= 𝑣𝑘7𝑇 =
𝜙𝑘7𝑇
𝑧

𝑧	= vol. of solute

lowest order term:

(van’t Hoff’s law, analogous to ideal gas law )
𝑁	= number of particles in V

ϕ = F)*+,-.
F  = E[

F

𝐴/𝑘7𝑇 ≈ 𝑁𝑙𝑛
𝑁
𝑉

𝐴 ≈ 𝑁𝑘7𝑇𝑙𝑛
𝑁
𝑉

Π = − \K-*-(F)
\F

≈ − \K F
\F

+ 𝑓 0 ≈ 𝑁𝑘7𝑇
D
F
+ 0 = 𝑣𝑘7𝑇

Derivation:
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expansion:
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ϕ = F)*+,-.
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F

𝐴/𝑘7𝑇 ≈ 𝑁𝑙𝑛
𝑁
𝑉

𝐴 ≈ 𝑁𝑘7𝑇𝑙𝑛
𝑁
𝑉

Π = − \K-*-(F)
\F

≈ − \K F
\F

+ 𝑓 0 ≈ 𝑁𝑘7𝑇
D
F
+ 0 = 𝑣𝑘7𝑇

Derivation:



Depletion Potential
𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡

d  = 2𝑅*	=
depletant diameter

when h> d, 
particles 
enter gap, 
Π vanishes

too big for 
gap

𝐴𝑟𝑒𝑎
(of plate)

Π = 𝑘!𝑇𝑣



Recall for Non-Interacting Particles
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(const. involves L )

𝐸8= 0, for every state j
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Depletion Potential
𝐴/𝑘7𝑇 = −𝑙𝑛𝑄 = −𝑁𝑙𝑛𝑉 + ln 𝑁! + 𝑐𝑜𝑛𝑠𝑡

if the number N of small depletant particles is 
fixed, but the volume V available to them is 
changed because of re-arrangement of the two 
surfaces, this will produce a force F given by

𝐹 = −𝜕𝐴/𝜕ℎ = −𝑘7𝑇𝑁
𝜕(𝑙𝑛𝑉)
𝜕ℎ

= −𝑘7𝑇𝑣𝑉
1
𝑉
𝜕(𝑉)
𝜕ℎ −𝑘7𝑇𝑣

𝜕𝑉
𝜕ℎ= = Π

𝜕𝑉
𝜕ℎ

Π = osmotic pressure for 
dilute particlespotential/area for flat plate:

𝑤 ℎ = 𝑣𝑘7𝑇 ℎ − 𝑑 , for	ℎ < 𝑑,
 =	0,		for	h		>	d

d  = 2𝑅*	=
depletant diameter

𝑤 ℎ = −
1

𝐴𝑟𝑒𝑎
_
a

b
𝐹 𝑥 𝑑𝑥

Doi, Soft Matter 
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when h> d, 
particles 
enter gap, 
Π vanishes

too big for 
gap

𝑁 = 𝑣𝑉

𝑁𝑜𝑡𝑒:
𝜕𝑉
𝜕ℎ

= 𝐴𝑟𝑒𝑎

𝐴𝑟𝑒𝑎
(of plate)

𝑘7𝑇𝑣(𝐴𝑟𝑒𝑎) 𝑤
0

ℎ 𝑑

Π = 𝑘!𝑇𝑣



Curved surfaces & Thin Gaps: Derjaguin 
Approximation

https://en.wikipedia.org/wiki/Derja
guin_approximation

Treat a thin region of 
variable gap as a 
series of small 
regions with parallel 
flat surfaces, with 
each region having a 
different gap



Derjaguin Approximation for Two Spheres 

�ℎ 𝜌 = ℎ + 2 𝑅 − 𝑅N − 𝜌N ≈ ℎ +
𝜌N

𝑅

At position r, take a ring of width dr, with area 2prdr 

If we have a potential per unit area w(h) between flat 
surfaces, then the potential U(h) between spheres is  

𝑈 ℎ = _
I

c
𝑤(�ℎ)2π𝜌𝑑𝜌 𝑥 ≡ ℎ + d&

c  = �ℎnew variable: 

𝑈 ℎ ≈ 𝜋𝑅_
a

e
𝑤( 𝑥)𝑑𝑥 𝐹 ℎ = −

𝜕𝑈 ℎ
𝜕ℎ

𝑈 ℎ = 2𝜋
𝑅D𝑅N
𝑅D + 𝑅N

_
a

e
𝑤( 𝑥)𝑑𝑥Note: if spheres have 

unequal radii: 

𝑅" − 𝜌"

𝑅 − 𝑅! − 𝜌!

𝑑𝑥 = 2𝜌𝑑𝜌/𝑅

= 𝜋𝑅𝑤(ℎ)

𝑅N − 𝜌N = R 1 − 𝜌N/𝑅N ≈ R(1 + 𝜌N/2𝑅N)



Depletion Potential for spheres 
for flat plate:

𝑈 ℎ = 𝜋𝑅_
a

e
𝑤( 𝑥)𝑑𝑥for two spheres:

for spheres,  replace h with �ℎ 𝑥   

𝑈 ℎ = 𝑣𝑘7𝑇𝜋𝑅_
a

b
(𝑥 − 𝑑) 𝑑𝑥

𝑤 ℎ = 𝑣𝑘7𝑇 ℎ − 𝑑 , for	ℎ < 𝑑,
 =	0,  for	h		>	d

𝑤 ℎ = 𝑣𝑘7𝑇 �ℎ 𝑥 − 𝑑 , for�	ℎ 𝑥 < 𝑑,
 =	0,  for	�ℎ 𝑥 		>	d

volume of overlapping 
depletion regions

= −
1
2
𝑣𝑘7𝑇𝜋𝑅(𝑑 − ℎ)N

overlapping 
depletion region
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d

remember, 𝑥 ≡ ℎ + d&

c  = �ℎ

𝑣 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑒𝑝𝑙𝑒𝑡𝑎𝑛𝑡
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Short range interactions 

Increasing attraction
(increasing depletant concentration)

Equilibrium phase behaviour of isotropic spheres

Long range interactions Medium range interactions 

Rg/a = 0.08 Rg/a = 0.33 Rg/a = 0.57

Depletion interaction;
a = radius of large sphere
Rg = radius of small sphere or 
polymer depletant

http://en.wikipedia.org/wi
ki/Depletion_force

vol. fr., f vol. fr., fvol. fr., f

typical liquid-liquid 
phase transition

2a
Rg

coexistence
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depletant conc. 
acts as inverse 
temp.



Review on liquid-liquid phase transition
IMF = intermolecular forces

https://www.youtube.com/watch?app=deskto
p&v=Tw_ul4-94_I&ab_channel=StuartWinikoff



Review on liquid-liquid phase transition



Review on liquid-liquid phase transition



Graphical solution



Review on liquid-liquid phase transition
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Rigid Nonspherical Particles: The Nematic Phase

• For molecules that are not spherical, packing and ordering transitions 
can occur that are more complex than those for spherical molecules.

• the simplest nonspherical shape is a stiff, long cylinder 

Transmission electron micrograph of TMV particles negative stained to enhance 
visibility at 160,000× magnification

https://en.wikipedia.org/wiki/Tobacco_
mosaic_virus

https://en.wikipedia.org/wiki/Tobacco_mosaic_virus
https://en.wikipedia.org/wiki/Tobacco_mosaic_virus


Rod-Like Objects

tobacco mosaic virus

https://www.google.com/search?q=tobacco+mosaic+virus+electron+micrograph&tbm=isch&source=iu&ictx=1&fir=VCHszPqFz02MJM%
253A%252Cys5UEQPy3oxCoM%252C_&usg=__4QlVfGScIPhDHu33e-dV01X-
65A%3D&sa=X&ved=0ahUKEwji5ZGC3KjYAhWr64MKHSdhCScQ9QEINjAE#imgrc=VCHszPqFz02MJM:

L= 300 nm long, d=18 nm wide

𝐷 =
𝑘+𝑇
3𝜋𝜇+𝐿

(ln
L
d + 0.3)

Diffusivity:



Lecture 5 Poll: Cylinder Packing
Consider only excluded volume effects, how should we expect 
the closest packing of cylindrical rods be compared to the HCP 
limit (~0.74) of hard spheres? 

• A. higher

• B. the same

• C. lower

https://forms.gle/y4xy3HsbFV6npW956Long URL

Short URL https://shorturl.at/gkGR7

You need to log in using your umich.edu account in order to access this poll

https://forms.gle/y4xy3HsbFV6npW956
https://shorturl.at/gkGR7




https://en.wikipedia.org/wiki/Circle_packing#:~:text=In%20the%20two%2Ddime
nsional%20Euclidean,is%20surrounded%20by%20six%20other



Packing of Cylinders

• The closest packing of cylindrical rods occurs when they are parallel 
to each other and packed hexagonally in the plane orthogonal to their 
axes; in this case, ф = 0.9069.

• If the density of long ordered rods is decreased, a melting transition 
will occur in which the in-plane hexagonal order is lost, but the 
orientational order of the rod axes is partially preserved. 

• This partially ordered state is called a nematic. States with partial 
order, including the nematic state, are common for stiff molecules of 
high aspect ratio. 



Literature presentations for 
Lecture 5



Literature and youtube
presentations for Lecture 5
• Random group assignments
• https://docs.google.com/spreadsheets/d/1EWhNB

hl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit
#gid=267969935

https://docs.google.com/spreadsheets/d/1EWhNBhl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit
https://docs.google.com/spreadsheets/d/1EWhNBhl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit
https://docs.google.com/spreadsheets/d/1EWhNBhl2nLaJGBrVEoSe4y0x5w41fPwD1HhYuJGUd9Y/edit





